Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Determination of the neutrino mass ordering by combining PINGU and Daya Bay II

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The relatively large measured value of θ 13 has opened various possibilities to determine the neutrino mass ordering, among them using PINGU, the low-energy extension of the IceCube neutrino telescope, to observe matter effects in atmospheric neutrinos, or a high statistics measurement of the neutrino energy spectrum at a reactor neutrino experiment with a baseline of around 60 km, such as the Daya Bay II project. In this work we point out a synergy between these two approaches based on the fact that when data are analysed with the wrong neutrino mass ordering the best fit occurs at different values of \( \left| {\varDelta m_{31}^2} \right| \) for PINGU and Daya Bay II. Hence, the wrong mass ordering can be excluded by a mismatch of the values inferred for \( \left| {\varDelta m_{31}^2} \right| \), thanks to the excellent accuracy for \( \left| {\varDelta m_{31}^2} \right| \) of both experiments. We perform numerical studies of PINGU and Daya Bay II sensitivities and show that the synergy effect may lead to a high significance determination of the mass ordering even in situations where the individual experiments obtain only poor sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Super-Kamiokande collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [INSPIRE].

    Article  ADS  Google Scholar 

  2. KamLAND collaboration, K. Eguchi et al., First results from KamLAND: evidence for reactor anti-neutrino disappearance, Phys. Rev. Lett. 90 (2003) 021802 [hep-ex/0212021] [INSPIRE].

    Article  ADS  Google Scholar 

  3. KamLAND collaboration, T. Araki et al., Measurement of neutrino oscillation with KamLAND: evidence of spectral distortion, Phys. Rev. Lett. 94 (2005) 081801 [hep-ex/0406035] [INSPIRE].

    Article  ADS  Google Scholar 

  4. CHOOZ collaboration, M. Apollonio et al., Search for neutrino oscillations on a long baseline at the CHOOZ nuclear power station, Eur. Phys. J. C 27 (2003) 331 [hep-ex/0301017] [INSPIRE].

    ADS  Google Scholar 

  5. DAYA-BAY collaboration, F. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].

    Article  ADS  Google Scholar 

  6. RENO collaboration, J. Ahn et al., Observation of Reactor Electron Antineutrino Disappearance in the RENO Experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].

    Article  ADS  Google Scholar 

  7. Double CHOOZ collaboration, Y. Abe et al., Reactor electron antineutrino disappearance in the Double CHOOZ experiment, Phys. Rev. D 86 (2012) 052008 [arXiv:1207.6632] [INSPIRE].

    ADS  Google Scholar 

  8. SNO collaboration, Q. Ahmad et al., Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89 (2002) 011301 [nucl-ex/0204008] [INSPIRE].

    Article  ADS  Google Scholar 

  9. MINOS collaboration, P. Adamson et al., Measurement of Neutrino Oscillations with the MINOS Detectors in the NuMI Beam, Phys. Rev. Lett. 101 (2008) 131802 [arXiv:0806.2237] [INSPIRE].

    Article  ADS  Google Scholar 

  10. T2K collaboration, K. Abe et al., Indication of Electron Neutrino Appearance from an Accelerator-produced Off-axis Muon Neutrino Beam, Phys. Rev. Lett. 107 (2011) 041801 [arXiv:1106.2822] [INSPIRE].

    Article  ADS  Google Scholar 

  11. M. Gonzalez-Garcia, M. Maltoni, J. Salvado and T. Schwetz, Global fit to three neutrino mixing: critical look at present precision, JHEP 12 (2012) 123 [arXiv:1209.3023] [INSPIRE].

    Article  ADS  Google Scholar 

  12. L. Wolfenstein, Neutrino oscillations in matter, Phys. Rev. D 17 (1978) 2369 [INSPIRE].

    ADS  Google Scholar 

  13. V.D. Barger, K. Whisnant, S. Pakvasa and R. Phillips, Matter effects on three-neutrino oscillations, Phys. Rev. D 22 (1980) 2718 [INSPIRE].

    ADS  Google Scholar 

  14. S. Mikheev and A.Y. Smirnov, Resonance Amplification of Oscillations in Matter and Spectroscopy of Solar Neutrinos, Sov. J. Nucl. Phys. 42 (1985) 913 [INSPIRE].

    Google Scholar 

  15. M. Blennow and A.Y. Smirnov, Neutrino propagation in matter, Adv. High Energy Phys. 2013 (2013) 972485 [arXiv:1306.2903] [INSPIRE].

    Google Scholar 

  16. INO, India-Based Neutrino Observatory, http://www.ino.tifr.res.in/ino/.

  17. M. Blennow and T. Schwetz, Identifying the neutrino mass ordering with INO and NOvA, JHEP 08 (2012) 058 [Erratum ibid. 1211 (2012) 098] [arXiv:1203.3388] [INSPIRE].

    Article  ADS  Google Scholar 

  18. A. Ghosh, T. Thakore and S. Choubey, Determining the neutrino mass hierarchy with INO, T2K, NOvA and reactor experiments, JHEP 04 (2013) 009 [arXiv:1212.1305] [INSPIRE].

    Article  ADS  Google Scholar 

  19. D.J. Koskinen, IceCube-DeepCore-PINGU: Fundamental neutrino and dark matter physics at the South Pole, Mod. Phys. Lett. A 26 (2011) 2899 [INSPIRE].

    Article  ADS  Google Scholar 

  20. Km3Net, P. Coyle et al., ORCA: Oscillation Research with Cosmics in the Abyss, contribution to the European Strategy Preparatory Group Symposium, Krakow Poland (2012).

  21. K. Abe et al., Letter of Intent: The Hyper-Kamiokande ExperimentDetector Design and Physics Potential, arXiv:1109.3262 [INSPIRE].

  22. D. Autiero et al., Large underground, liquid based detectors for astro-particle physics in Europe: Scientific case and prospects, JCAP 11 (2007) 011 [arXiv:0705.0116] [INSPIRE].

    Article  ADS  Google Scholar 

  23. S. Petcov and M. Piai, The LMA MSW solution of the solar neutrino problem, inverted neutrino mass hierarchy and reactor neutrino experiments, Phys. Lett. B 533 (2002) 94 [hep-ph/0112074] [INSPIRE].

    Article  ADS  Google Scholar 

  24. Y. Wang, Daya Bay II: current status and future plan, talk at Daya Bay II meeting, IHEP, Beijing China (2013).

    Google Scholar 

  25. W. Wang, The Measurement of θ 13 at Daya Bay and Beyond, talk at the Beyond θ 13 workshop, University of Pittsburgh, Pittsburgh U.S.A. (2013), http://www.pitt.edu/neilc/BeyondTheta13/.

  26. International Workshop onRENO-50toward Neutrino Mass Hierarchy, 13-14 June 2013, Seoul National University, Seoul Korea, http://home.kias.re.kr/MKG/h/reno50/.

  27. H. Nunokawa, S.J. Parke and R. Zukanovich Funchal, Another possible way to determine the neutrino mass hierarchy, Phys. Rev. D 72 (2005) 013009 [hep-ph/0503283] [INSPIRE].

    ADS  Google Scholar 

  28. H. Minakata, H. Nunokawa, S.J. Parke and R. Zukanovich Funchal, Determining neutrino mass hierarchy by precision measurements in electron and muon neutrino disappearance experiments, Phys. Rev. D 74 (2006) 053008 [hep-ph/0607284] [INSPIRE].

    ADS  Google Scholar 

  29. A. de Gouvêa, J. Jenkins and B. Kayser, Neutrino mass hierarchy, vacuum oscillations and vanishing |U e3|, Phys. Rev. D 71 (2005) 113009 [hep-ph/0503079] [INSPIRE].

    ADS  Google Scholar 

  30. X. Qian et al., Mass Hierarchy Resolution in Reactor Anti-neutrino Experiments: Parameter Degeneracies and Detector Energy Response, Phys. Rev. D 87 (2013), no. 3 033005 [arXiv:1208.1551] [INSPIRE].

    Google Scholar 

  31. S.-F. Ge, K. Hagiwara, N. Okamura and Y. Takaesu, Determination of mass hierarchy with medium baseline reactor neutrino experiments, JHEP 05 (2013) 131 [arXiv:1210.8141] [INSPIRE].

    Article  ADS  Google Scholar 

  32. Y.-F. Li, J. Cao, Y. Wang and L. Zhan, Unambiguous Determination of the Neutrino Mass Hierarchy Using Reactor Neutrinos, Phys. Rev. D 88 (2013) 013008 [arXiv:1303.6733] [INSPIRE].

    ADS  Google Scholar 

  33. W. Winter, Neutrino mass hierarchy determination with IceCube-PINGU, Phys. Rev. D 88 (2013) 013013 [arXiv:1305.5539] [INSPIRE].

    ADS  Google Scholar 

  34. IceCube collaboration, R. Abbasi et al., The Design and Performance of IceCube DeepCore, Astropart. Phys. 35 (2012) 615 [arXiv:1109.6096] [INSPIRE].

    Article  ADS  Google Scholar 

  35. D. Fargion, D. D’Armiento, P. Desiati and P. Paggi, Beaming neutrino and antineutrinos across the Earth to disentangle neutrino mixing parameters, Astrophys. J. 758 (2012) 3 [arXiv:1012.3245] [INSPIRE].

    Article  ADS  Google Scholar 

  36. J. Tang and W. Winter, Requirements for a New Detector at the South Pole Receiving an Accelerator Neutrino Beam, JHEP 02 (2012) 028 [arXiv:1110.5908] [INSPIRE].

    Article  ADS  Google Scholar 

  37. J. Brunner, Counting Electrons to Probe the Neutrino Mass Hierarchy, arXiv:1304.6230 [INSPIRE].

  38. E.K. Akhmedov, S. Razzaque and A.Y. Smirnov, Mass hierarchy, 2-3 mixing and CP-phase with Huge Atmospheric Neutrino Detectors, JHEP 02 (2013) 082 [Erratum ibid. 1307 (2013) 026] [arXiv:1205.7071] [INSPIRE].

    Article  ADS  Google Scholar 

  39. O. Mena, I. Mocioiu and S. Razzaque, Neutrino mass hierarchy extraction using atmospheric neutrinos in ice, Phys. Rev. D 78 (2008) 093003 [arXiv:0803.3044] [INSPIRE].

    ADS  Google Scholar 

  40. E. Fernandez-Martinez, G. Giordano, O. Mena and I. Mocioiu, Atmospheric neutrinos in ice and measurement of neutrino oscillation parameters, Phys. Rev. D 82 (2010) 093011 [arXiv:1008.4783] [INSPIRE].

    ADS  Google Scholar 

  41. D. Indumathi and M. Murthy, A Question of hierarchy: Matter effects with atmospheric neutrinos and anti-neutrinos, Phys. Rev. D 71 (2005) 013001 [hep-ph/0407336] [INSPIRE].

    ADS  Google Scholar 

  42. S. Petcov and T. Schwetz, Determining the neutrino mass hierarchy with atmospheric neutrinos, Nucl. Phys. B 740 (2006) 1 [hep-ph/0511277] [INSPIRE].

    Article  ADS  Google Scholar 

  43. A. Samanta, The mass hierarchy with atmospheric neutrinos at INO, Phys. Lett. B 673 (2009) 37 [hep-ph/0610196] [INSPIRE].

    Article  ADS  Google Scholar 

  44. S.K. Agarwalla, T. Li, O. Mena and S. Palomares-Ruiz, Exploring the Earth matter effect with atmospheric neutrinos in ice, arXiv:1212.2238 [INSPIRE].

  45. D. Franco et al., Mass hierarchy discrimination with atmospheric neutrinos in large volume ice/water Cherenkov detectors, JHEP 04 (2013) 008 [arXiv:1301.4332] [INSPIRE].

    Article  ADS  Google Scholar 

  46. M. Ribordy and A.Y. Smirnov, Improving the neutrino mass hierarchy identification with inelasticity measurement in PINGU and ORCA, Phys. Rev. D 87 (2013) 113007 [arXiv:1303.0758] [INSPIRE].

    ADS  Google Scholar 

  47. D. Cowen, Future Instruments: PINGU, talk at Snowmass Cosmic Frontier Workshop, 6-8 March 2013, SLAC, Menlo Park U.S.A.

  48. A. Dziewonski and D. Anderson, Preliminary reference earth model, Phys. Earth Planet. Interiors 25 (1981) 297.

    Article  ADS  Google Scholar 

  49. M. Honda, T. Kajita, K. Kasahara and S. Midorikawa, Calculation of the flux of atmospheric neutrinos, Phys. Rev. D 52 (1995) 4985 [hep-ph/9503439] [INSPIRE].

    ADS  Google Scholar 

  50. C. Andreopoulos et al., The GENIE Neutrino Monte Carlo Generator, Nucl. Instrum. Meth. A 614 (2010) 87 [arXiv:0905.2517] [INSPIRE].

    Article  ADS  Google Scholar 

  51. A. Ghosh and S. Choubey, Measuring the Mass Hierarchy with Muon and Hadron Events in Atmospheric Neutrino Experiments, arXiv:1306.1423 [INSPIRE].

  52. M. Honda, T. Kajita, K. Kasahara and S. Midorikawa, A New calculation of the atmospheric neutrino flux in a 3-dimensional scheme, Phys. Rev. D 70 (2004) 043008 [astro-ph/0404457] [INSPIRE].

    ADS  Google Scholar 

  53. E. Paschos and J. Yu, Neutrino interactions in oscillation experiments, Phys. Rev. D 65 (2002) 033002 [hep-ph/0107261] [INSPIRE].

    ADS  Google Scholar 

  54. M. Gonzalez-Garcia and M. Maltoni, Atmospheric neutrino oscillations and new physics, Phys. Rev. D 70 (2004) 033010 [hep-ph/0404085] [INSPIRE].

    ADS  Google Scholar 

  55. M. Blennow, P. Coloma, P. Huber and T. Schwetz, in preparation (2013).

  56. X. Qian et al., Statistical Evaluation of Experimental Determinations of Neutrino Mass Hierarchy, Phys. Rev. D 86 (2012) 113011 [arXiv:1210.3651] [INSPIRE].

    ADS  Google Scholar 

  57. E. Ciuffoli, J. Evslin and X. Zhang, Confidence in a Neutrino Mass Hierarchy Determination, arXiv:1305.5150 [INSPIRE].

  58. S. Schonert, T. Lasserre and L. Oberauer, The HLMA project: Determination of high Δm 2 LMA mixing parameters and constraint on |U e3| with a new reactor neutrino experiment, Astropart. Phys. 18 (2003) 565 [hep-ex/0203013] [INSPIRE].

    Article  ADS  Google Scholar 

  59. S. Choubey, S. Petcov and M. Piai, Precision neutrino oscillation physics with an intermediate baseline reactor neutrino experiment, Phys. Rev. D 68 (2003) 113006 [hep-ph/0306017] [INSPIRE].

    ADS  Google Scholar 

  60. J. Learned, S.T. Dye, S. Pakvasa and R.C. Svoboda, Determination of neutrino mass hierarchy and theta(13) with a remote detector of reactor antineutrinos, Phys. Rev. D 78 (2008) 071302 [hep-ex/0612022] [INSPIRE].

    ADS  Google Scholar 

  61. M. Batygov et al., Prospects of neutrino oscillation measurements in the detection of reactor antineutrinos with a medium-baseline experiment, arXiv:0810.2580 [INSPIRE].

  62. L. Zhan, Y. Wang, J. Cao and L. Wen, Determination of the Neutrino Mass Hierarchy at an Intermediate Baseline, Phys. Rev. D 78 (2008) 111103 [arXiv:0807.3203] [INSPIRE].

    ADS  Google Scholar 

  63. L. Zhan, Y. Wang, J. Cao and L. Wen, Experimental Requirements to Determine the Neutrino Mass Hierarchy Using Reactor Neutrinos, Phys. Rev. D 79 (2009) 073007 [arXiv:0901.2976] [INSPIRE].

    ADS  Google Scholar 

  64. P. Ghoshal and S. Petcov, Neutrino mass hierarchy determination using reactor antineutrinos, JHEP 03 (2011) 058 [arXiv:1011.1646] [INSPIRE].

    Article  ADS  Google Scholar 

  65. P. Ghoshal and S. Petcov, Addendum: Neutrino mass hierarchy determination using reactor antineutrinos, JHEP 09 (2012) 115 [arXiv:1208.6473] [INSPIRE].

    Article  ADS  Google Scholar 

  66. E. Ciuffoli, J. Evslin and X. Zhang, Mass hierarchy determination using neutrinos from multiple reactors, JHEP 12 (2012) 004 [arXiv:1209.2227] [INSPIRE].

    Article  ADS  Google Scholar 

  67. E. Ciuffoli et al., Medium baseline reactor neutrino experiments with 2 identical detectors, arXiv:1211.6818 [INSPIRE].

  68. E. Ciuffoli, J. Evslin and X. Zhang, Optimizing medium baseline reactor neutrino experiments, arXiv:1302.0624 [INSPIRE].

  69. T2K collaboration, K. Abe et al., First Muon-Neutrino Disappearance Study with an Off-Axis Beam, Phys. Rev. D 85 (2012) 031103 [arXiv:1201.1386] [INSPIRE].

    ADS  Google Scholar 

  70. P. Huber, M. Lindner and W. Winter, Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator), Comput. Phys. Commun. 167 (2005) 195 [hep-ph/0407333] [INSPIRE].

    Article  ADS  Google Scholar 

  71. P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: General Long Baseline Experiment Simulator, Comput. Phys. Commun. 177 (2007) 432 [hep-ph/0701187] [INSPIRE].

    Article  ADS  Google Scholar 

  72. W. Wang, Resolving Neutrino Mass Hierarchy using Nuclear Reactor(s), talk at Invisibles13, Lumley Castle U.K. (2013).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattias Blennow.

Additional information

ArXiv ePrint: 1306.3988

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blennow, M., Schwetz, T. Determination of the neutrino mass ordering by combining PINGU and Daya Bay II. J. High Energ. Phys. 2013, 89 (2013). https://doi.org/10.1007/JHEP09(2013)089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2013)089

Keywords