Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Comments on 3d Seiberg-like dualities

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study Seiberg-like dualities in three dimensional \( \mathcal{N} = 2 \) supersymmetric theories, emphasizing Chern-Simons terms for the global symmetry group, which affect contact terms in two-point functions of global currents and are essential to the duality map. We introduce new Seiberg-like dualities for Yang-Mills-Chern-Simons theories with unitary gauge groups with arbitrary numbers of matter fields in the fundamental and antifundamental representations. These dualities are derived from Aharony duality by real mass deformations. They allow to initiate the systematic study of Seiberg-like dualities in Chern-Simons quivers. We also comment on known Seiberg-like dualities for symplectic and orthogonal gauge groups and extend the latter to the Yang-Mills case. We check our proposals by showing that the localized partition functions on the squashed S 3 match between dual descriptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Gaiotto and X. Yin, Notes on superconformal Chern-Simons-matter theories, JHEP 08 (2007) 056 [arXiv:0704.3740] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  2. N. Seiberg, Electric-magnetic duality in supersymmetric nonAbelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. K.A. Intriligator and N. Seiberg, Mirror symmetry in three dimensional gauge theories, Phys. Lett. B 387 (1996) 513 [hep-th/9607207] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  4. J. de Boer, K. Hori, Y. Oz and Z. Yin, Branes and mirror symmetry in N = 2 supersymmetric gauge theories in three dimensions, Nucl. Phys. B 502 (1997) 107 [hep-th/9702154] [SPIRES].

    Article  ADS  Google Scholar 

  5. O. Aharony, A. Hanany, K.A. Intriligator, N. Seiberg and M.J. Strassler, Aspects of N = 2 supersymmetric gauge theories in three dimensions, Nucl. Phys. B 499 (1997) 67 [hep-th/9703110] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. V. Borokhov, A. Kapustin and X.-k. Wu, Monopole operators and mirror symmetry in three dimensions, JHEP 12 (2002) 044 [hep-th/0207074] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. J. de Boer, K. Hori and Y. Oz, Dynamics of N = 2 supersymmetric gauge theories in three dimensions, Nucl. Phys. B 500 (1997) 163 [hep-th/9703100] [SPIRES].

    Article  ADS  Google Scholar 

  8. A. Karch, Seiberg duality in three dimensions, Phys. Lett. B 405 (1997) 79 [hep-th/9703172] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  9. O. Aharony, IR duality in D = 3 N = 2 supersymmetric USp(2N c) and U(N c) gauge theories, Phys. Lett. B 404 (1997) 71 [hep-th/9703215] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  10. V. Niarchos, R-charges, Chiral Rings and RG Flows in Supersymmetric Chern-Simons-Matter Theories, JHEP 05 (2009) 054 [arXiv:0903.0435] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. O. Aharony, O. Bergman and D.L. Jafferis, Fractional M2-branes, JHEP 11 (2008) 043 [arXiv:0807.4924] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. A. Giveon and D. Kutasov, Seiberg Duality in Chern-Simons Theory, Nucl. Phys. B 812 (2009) 1 [arXiv:0808.0360] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. A. Kapustin, B. Willett and I. Yaakov, Tests of Seiberg-like Duality in Three Dimensions, arXiv:1012.4021 [SPIRES].

  14. B. Willett and I. Yaakov, N = 2 Dualities and Z Extremization in Three Dimensions, arXiv:1104.0487 [SPIRES].

  15. A. Kapustin, Seiberg-like duality in three dimensions for orthogonal gauge groups, arXiv:1104.0466 [SPIRES].

  16. D. Bashkirov, Aharony duality and monopole operators in three dimensions, arXiv:1106.4110 [SPIRES].

  17. F.A.H. Dolan, V.P. Spiridonov and G.S. Vartanov, From 4d superconformal indices to 3d partition functions, Phys. Lett. B 704 (2011) 234 [arXiv:1104.1787] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  18. D. Berenstein and M. Romo, Monopole operators, moduli spaces and dualities, arXiv:1108.4013 [SPIRES].

  19. T. Morita and V. Niarchos, F-theorem, duality and SUSY breaking in one-adjoint Chern-Simons-Matter theories, arXiv:1108.4963 [SPIRES].

  20. I. Shamir, Aspects of three dimensional Seiberg duality, Weizmann MSc Thesis, to appear.

  21. N. Hama, K. Hosomichi and S. Lee, SUSY Gauge Theories on Squashed Three-Spheres, JHEP 05 (2011) 014 [arXiv:1102.4716] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  22. D.L. Jafferis, I.R. Klebanov, S.S. Pufu and B.R. Safdi, Towards the F-Theorem: N=2 Field Theories on the Three-Sphere, JHEP 06 (2011) 102 [arXiv:1103.1181] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. O. Aharony and I. Shamir, On o(n c) d = 3 n = 2 supersymmetric qcd theories, arXiv:1109.5081 [SPIRES].

  24. E. Witten, \( {\text{SL}}\left( {2,\mathbb{Z}} \right) \) action on three-dimensional conformal field theories with Abelian symmetry, hep-th/0307041 [SPIRES].

  25. A. Kapustin and M.J. Strassler, On Mirror Symmetry in Three Dimensional Abelian Gauge Theories, JHEP 04 (1999) 021 [hep-th/9902033] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. Z. Komargodski and N. Seiberg, Comments on Supercurrent Multiplets, Supersymmetric Field Theories and Supergravity, JHEP 07 (2010) 017 [arXiv:1002.2228] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  27. G. Festuccia and N. Seiberg, Rigid Supersymmetric Theories in Curved Superspace, JHEP 06 (2011) 114 [arXiv:1105.0689] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. M.F. Sohnius and P.C. West, An Alternative Minimal Off-Shell Version of N=1 Supergravity, Phys. Lett. B 105 (1981) 353 [SPIRES].

    ADS  Google Scholar 

  29. A.N. Redlich, Gauge Noninvariance and Parity Nonconservation of Three-Dimensional Fermions, Phys. Rev. Lett. 52 (1984) 18 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. A.N. Redlich, Parity Violation and Gauge Noninvariance of the Effective Gauge Field Action in Three-Dimensions, Phys. Rev. D 29 (1984) 2366 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  31. N. Dorey, D. Tong and S. Vandoren, Instanton effects in three-dimensional supersymmetric gauge theories with matter, JHEP 04 (1998) 005 [hep-th/9803065] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  32. S. Deser, R. Jackiw and S. Templeton, Topologically massive gauge theories, Ann. Phys. 140 (1982) 372 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  33. S. Cremonesi, Type IIB construction of flavoured ABJ(M) and fractional M2 branes, JHEP 01 (2011) 076 [arXiv:1007.4562] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  34. A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  35. O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  36. Y. Imamura and K. Kimura, Quiver Chern-Simons theories and crystals, JHEP 10 (2008) 114 [arXiv:0808.4155] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  37. A. Hanany and A. Zaffaroni, Tilings, Chern-Simons Theories and M2 Branes, JHEP 10 (2008) 111 [arXiv:0808.1244] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  38. D. Martelli and J. Sparks, Moduli spaces of Chern-Simons quiver gauge theories and AdS 4 /CFT 3, Phys. Rev. D 78 (2008) 126005 [arXiv:0808.0912] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  39. S. Franco, I.R. Klebanov and D. Rodriguez-Gomez, M2-branes on Orbifolds of the Cone over Q 1,1,1, JHEP 08 (2009) 033 [arXiv:0903.3231] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  40. M. Aganagic, A Stringy Origin of M2 Brane Chern-Simons Theories, Nucl. Phys. B 835 (2010) 1 [arXiv:0905.3415] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  41. J. Davey, A. Hanany, N. Mekareeya and G. Torri, Phases of M2-brane Theories, JHEP 06 (2009) 025 [arXiv:0903.3234] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  42. A. Tomasiello and A. Zaffaroni, Parameter spaces of massive IIA solutions, JHEP 04 (2011) 067 [arXiv:1010.4648] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  43. D. Gaiotto and D.L. Jafferis, Notes on adding D6 branes wrapping RP 3 in AdS 4 × CP 3, arXiv:0903.2175 [SPIRES].

  44. F. Benini, C. Closset and S. Cremonesi, Chiral flavors and M2-branes at toric CY4 singularities, JHEP 02 (2010) 036 [arXiv:0911.4127] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  45. D.L. Jafferis, Quantum corrections to N = 2 Chern-Simons theories with flavor and their AdS 4 duals, arXiv:0911.4324 [SPIRES].

  46. F. Benini, C. Closset and S. Cremonesi, Quantum moduli space of Chern-Simons quivers, wrapped D6-branes and AdS4/CFT3, JHEP 09 (2011) 005 [arXiv:1105.2299] [SPIRES].

    Article  ADS  Google Scholar 

  47. A. Amariti, D. Forcella, L. Girardello and A. Mariotti, 3D Seiberg-like Dualities and M2 Branes, JHEP 05 (2010) 025 [arXiv:0903.3222] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  48. K. Jensen and A. Karch, ABJM Mirrors and a Duality of Dualities, JHEP 09 (2009) 004 [arXiv:0906.3013] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  49. F. Cachazo, B. Fiol, K.A. Intriligator, S. Katz and C. Vafa, A geometric unification of dualities, Nucl. Phys. B 628 (2002) 3 [hep-th/0110028] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  50. B. Feng, A. Hanany, Y.H. He and A. Iqbal, Quiver theories, soliton spectra and Picard-Lefschetz transformations, JHEP 02 (2003) 056 [hep-th/0206152] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  51. C.P. Herzog, Seiberg duality is an exceptional mutation, JHEP 08 (2004) 064 [hep-th/0405118] [SPIRES].

    Article  ADS  Google Scholar 

  52. C. Closset, Unpublished.

  53. A. Kapustin, B. Willett and I. Yaakov, Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  54. D.L. Jafferis, The Exact Superconformal R-Symmetry Extremizes Z, arXiv:1012.3210 [SPIRES].

  55. N. Hama, K. Hosomichi and S. Lee, Notes on SUSY Gauge Theories on Three-Sphere, JHEP 03 (2011) 127 [arXiv:1012.3512] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  56. F. van de Bult, Hyperbolic Hypergeometric Functions, http://www.its.caltech.edu/∼vdbult/Thesis.pdf.

  57. N. Dorey and D. Tong, Mirror symmetry and toric geometry in three dimensional gauge theories, JHEP 05 (2000) 018 [hep-th/9911094] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  58. C. Hwang, H. Kim, K.-J. Park and J. Park, Index computation for 3d Chern-Simons matter theory: test of Seiberg-like duality, JHEP 09 (2011) 037 [arXiv:1107.4942] [SPIRES].

    Article  ADS  Google Scholar 

  59. F.A. Dolan and H. Osborn, Applications of the Superconformal Index for Protected Operators and q-Hypergeometric Identities to N = 1 Dual Theories, Nucl. Phys. B 818 (2009) 137 [arXiv:0801.4947] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  60. V.P. Spiridonov and G.S. Vartanov, Elliptic hypergeometry of supersymmetric dualities II. Orthogonal groups, knots and vortices, arXiv:1107.5788 [SPIRES].

  61. N. Kurokawa and S. Koyama, Multiple Sine Functions (I), http://www.math.keio.ac.jp/library/research/report/2001/01005.pdf.

  62. A. Kapustin, Wilson-’t Hooft operators in four-dimensional gauge theories and S-duality, Phys. Rev. D 74 (2006) 025005 [hep-th/0501015] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  63. Y. Imamura and S. Yokoyama, Index for three dimensional superconformal field theories with general R-charge assignments, JHEP 04 (2011) 007 [arXiv:1101.0557] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  64. C. Krattenthaler, V.P. Spiridonov and G.S. Vartanov, Superconformal indices of three-dimensional theories related by mirror symmetry, JHEP 06 (2011) 008 [arXiv:1103.4075] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  65. A. Kapustin and B. Willett, Generalized Superconformal Index for Three Dimensional Field Theories, arXiv:1106.2484 [SPIRES].

  66. F. Benini, C. Closset and S. Cremonesi, work in progress.

  67. S. Ruijsenaars, First order analytic difference equations and integrable quantum systems, J. Math. Phys. 38 (1997) 1069.

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyril Closset.

Additional information

ArXiv ePrint: 1108.5373

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benini, F., Closset, C. & Cremonesi, S. Comments on 3d Seiberg-like dualities. J. High Energ. Phys. 2011, 75 (2011). https://doi.org/10.1007/JHEP10(2011)075

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2011)075

Keywords