Abstract
If fermionic dark matter (DM) is stabilized by dark U(1) gauge symmetry that is spontaneously broken into its subgroup Z2, the particle contents of the model becomes very rich: DM and excited DM, both of them are Majorana fermions, as well as two dark force mediators, dark photon and dark Higgs boson are naturally present due to the underlying dark gauge symmetry. In this paper, we study the DM bound state formation processes within this scenario, assuming both dark photon and dark Higgs are light mediators and including the effects of excited DM. The Goldstone boson contributions to the potential matrix in the Schrödinger equations are found to be important. The emissions of a longitudinal vector boson (or somehow equivalently a Goldstone boson) during the DM bound state formations are crucial to induce a significant reannihilation process, reducing the dark matter relic abundance. Most of the stringent constraints for this kind of dark matter considered in the literature are simply evaded.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].
A. Sommerfeld, Über die Beugung und Bremsung der Elektronen (in German), Annalen Phys. 403 (1931) 257.
J. Hisano, S. Matsumoto and M.M. Nojiri, Unitarity and higher order corrections in neutralino dark matter annihilation into two photons, Phys. Rev. D 67 (2003) 075014 [hep-ph/0212022] [INSPIRE].
J. Hisano, S. Matsumoto and M.M. Nojiri, Explosive dark matter annihilation, Phys. Rev. Lett. 92 (2004) 031303 [hep-ph/0307216] [INSPIRE].
J. Hisano, S. Matsumoto, M.M. Nojiri and O. Saito, Non-perturbative effect on dark matter annihilation and gamma ray signature from galactic center, Phys. Rev. D 71 (2005) 063528 [hep-ph/0412403] [INSPIRE].
J. Hisano, S. Matsumoto, O. Saito and M. Senami, Heavy wino-like neutralino dark matter annihilation into antiparticles, Phys. Rev. D 73 (2006) 055004 [hep-ph/0511118] [INSPIRE].
M. Cirelli, A. Strumia and M. Tamburini, Cosmology and astrophysics of minimal dark matter, Nucl. Phys. B 787 (2007) 152 [arXiv:0706.4071] [INSPIRE].
J. March-Russell, S.M. West, D. Cumberbatch and D. Hooper, Heavy dark matter through the Higgs portal, JHEP 07 (2008) 058 [arXiv:0801.3440] [INSPIRE].
M. Cirelli, R. Franceschini and A. Strumia, Minimal dark matter predictions for galactic positrons, anti-protons, photons, Nucl. Phys. B 800 (2008) 204 [arXiv:0802.3378] [INSPIRE].
M. Cirelli and A. Strumia, Minimal dark matter predictions and the PAMELA positron excess, PoS(IDM2008)089 (2008) [arXiv:0808.3867] [INSPIRE].
I. Cholis, D.P. Finkbeiner, L. Goodenough and N. Weiner, The PAMELA positron excess from annihilations into a light boson, JCAP 12 (2009) 007 [arXiv:0810.5344] [INSPIRE].
I. Cholis, G. Dobler, D.P. Finkbeiner, L. Goodenough and N. Weiner, The case for a 700+ GeV WIMP: cosmic ray spectra from ATIC and PAMELA, Phys. Rev. D 80 (2009) 123518 [arXiv:0811.3641] [INSPIRE].
G. Bertone, M. Cirelli, A. Strumia and M. Taoso, Gamma-ray and radio tests of the e+e− excess from DM annihilations, JCAP 03 (2009) 009 [arXiv:0811.3744] [INSPIRE].
E.J. Chun and J.-C. Park, Dark matter and sub-GeV hidden U(1) in GMSB models, JCAP 02 (2009) 026 [arXiv:0812.0308] [INSPIRE].
Y. Bai and Z. Han, Measuring the dark force at the LHC, Phys. Rev. Lett. 103 (2009) 051801 [arXiv:0902.0006] [INSPIRE].
N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A theory of dark matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [INSPIRE].
PAMELA collaboration, An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV, Nature 458 (2009) 607 [arXiv:0810.4995] [INSPIRE].
AMS collaboration, First result from the Alpha Magnetic Spectrometer on the International Space Station: precision measurement of the positron fraction in primary cosmic rays of 0.5–350 GeV, Phys. Rev. Lett. 110 (2013) 141102 [INSPIRE].
AMS collaboration, High statistics measurement of the positron fraction in primary cosmic rays of 0.5–500 GeV with the Alpha Magnetic Spectrometer on the International Space Station, Phys. Rev. Lett. 113 (2014) 121101 [INSPIRE].
B. Moore et al., Dark matter substructure within galactic halos, Astrophys. J. Lett. 524 (1999) L19 [astro-ph/9907411] [INSPIRE].
A.V. Kravtsov, Dark matter substructure and dwarf galactic satellites, Adv. Astron. 2010 (2010) 281913 [arXiv:0906.3295] [INSPIRE].
B. Moore, T.R. Quinn, F. Governato, J. Stadel and G. Lake, Cold collapse and the core catastrophe, Mon. Not. Roy. Astron. Soc. 310 (1999) 1147 [astro-ph/9903164] [INSPIRE].
W.J.G. de Blok, The core-cusp problem, Adv. Astron. 2010 (2010) 789293 [arXiv:0910.3538] [INSPIRE].
M. Vogelsberger, J. Zavala and A. Loeb, Subhaloes in self-interacting galactic dark matter haloes, Mon. Not. Roy. Astron. Soc. 423 (2012) 3740 [arXiv:1201.5892] [INSPIRE].
M. Boylan-Kolchin, J.S. Bullock and M. Kaplinghat, Too big to fail? The puzzling darkness of massive milky way subhaloes, Mon. Not. Roy. Astron. Soc. 415 (2011) L40 [arXiv:1103.0007] [INSPIRE].
M. Boylan-Kolchin, J.S. Bullock and M. Kaplinghat, The milky way’s bright satellites as an apparent failure of ΛCDM, Mon. Not. Roy. Astron. Soc. 422 (2012) 1203 [arXiv:1111.2048] [INSPIRE].
A. Pontzen and F. Governato, How supernova feedback turns dark matter cusps into cores, Mon. Not. Roy. Astron. Soc. 421 (2012) 3464 [arXiv:1106.0499] [INSPIRE].
A.M. Brooks and A. Zolotov, Why baryons matter: the kinematics of dwarf spheroidal satellites, Astrophys. J. 786 (2014) 87 [arXiv:1207.2468] [INSPIRE].
A.M. Brooks, M. Kuhlen, A. Zolotov and D. Hooper, A baryonic solution to the missing satellites problem, Astrophys. J. 765 (2013) 22 [arXiv:1209.5394] [INSPIRE].
T. Bringmann, F. Kahlhoefer, K. Schmidt-Hoberg and P. Walia, Strong constraints on self-interacting dark matter with light mediators, Phys. Rev. Lett. 118 (2017) 141802 [arXiv:1612.00845] [INSPIRE].
S.W. Randall, M. Markevitch, D. Clowe, A.H. Gonzalez and M. Bradac, Constraints on the self-interaction cross-section of dark matter from numerical simulations of the merging galaxy cluster 1E0657-56, Astrophys. J. 679 (2008) 1173 [arXiv:0704.0261] [INSPIRE].
M. Markevitch et al., Direct constraints on the dark matter self-interaction cross-section from the merging galaxy cluster 1E0657-56, Astrophys. J. 606 (2004) 819 [astro-ph/0309303] [INSPIRE].
A.H.G. Peter, M. Rocha, J.S. Bullock and M. Kaplinghat, Cosmological simulations with self-interacting dark matter II: halo shapes vs. observations, Mon. Not. Roy. Astron. Soc. 430 (2013) 105 [arXiv:1208.3026] [INSPIRE].
M. Rocha et al., Cosmological simulations with self-interacting dark matter I: constant density cores and substructure, Mon. Not. Roy. Astron. Soc. 430 (2013) 81 [arXiv:1208.3025] [INSPIRE].
F. Kahlhoefer, K. Schmidt-Hoberg, M.T. Frandsen and S. Sarkar, Colliding clusters and dark matter self-interactions, Mon. Not. Roy. Astron. Soc. 437 (2014) 2865 [arXiv:1308.3419] [INSPIRE].
D. Harvey, R. Massey, T. Kitching, A. Taylor and E. Tittley, The non-gravitational interactions of dark matter in colliding galaxy clusters, Science 347 (2015) 1462 [arXiv:1503.07675] [INSPIRE].
M. Kaplinghat, S. Tulin and H.-B. Yu, Dark matter halos as particle colliders: unified solution to small-scale structure puzzles from dwarfs to clusters, Phys. Rev. Lett. 116 (2016) 041302 [arXiv:1508.03339] [INSPIRE].
K. Petraki, M. Postma and M. Wiechers, Dark-matter bound states from Feynman diagrams, JHEP 06 (2015) 128 [arXiv:1505.00109] [INSPIRE].
K. Petraki, M. Postma and J. de Vries, Radiative bound-state-formation cross-sections for dark matter interacting via a Yukawa potential, JHEP 04 (2017) 077 [arXiv:1611.01394] [INSPIRE].
J. Ellis, F. Luo and K.A. Olive, Gluino coannihilation revisited, JHEP 09 (2015) 127 [arXiv:1503.07142] [INSPIRE].
R. Laha, Directional detection of dark matter in universal bound states, Phys. Rev. D 92 (2015) 083509 [arXiv:1505.02772] [INSPIRE].
K.M. Belotsky, E.A. Esipova and A.A. Kirillov, On the classical description of the recombination of dark matter particles with a Coulomb-like interaction, Phys. Lett. B 761 (2016) 81 [arXiv:1506.03094] [INSPIRE].
N. Fonseca, L. Necib and J. Thaler, Dark matter, shared asymmetries and galactic gamma ray signals, JCAP 02 (2016) 052 [arXiv:1507.08295] [INSPIRE].
S. Kim and M. Laine, Rapid thermal co-annihilation through bound states in QCD, JHEP 07 (2016) 143 [arXiv:1602.08105] [INSPIRE].
X.-J. Bi, Z. Kang, P. Ko, J. Li and T. Li, Asymmetric dark matter bound state, Phys. Rev. D 95 (2017) 043540 [arXiv:1602.08816] [INSPIRE].
Z. Kang, Bound states via Higgs exchanging and heavy resonant di-Higgs, Phys. Lett. B 771 (2017) 313 [arXiv:1606.01531] [INSPIRE].
F. Nozzoli, A balance for dark matter bound states, Astropart. Phys. 91 (2017) 22 [arXiv:1608.00405] [INSPIRE].
S. Kim and M. Laine, On thermal corrections to near-threshold annihilation, JCAP 01 (2017) 013 [arXiv:1609.00474] [INSPIRE].
P. Asadi, M. Baumgart, P.J. Fitzpatrick, E. Krupczak and T.R. Slatyer, Capture and decay of electroweak WIMPonium, JCAP 02 (2017) 005 [arXiv:1610.07617] [INSPIRE].
S.P. Liew and F. Luo, Effects of QCD bound states on dark matter relic abundance, JHEP 02 (2017) 091 [arXiv:1611.08133] [INSPIRE].
M. Cirelli, P. Panci, K. Petraki, F. Sala and M. Taoso, Dark matter’s secret liaisons: phenomenology of a dark U(1) sector with bound states, JCAP 05 (2017) 036 [arXiv:1612.07295] [INSPIRE].
H. Fukuda, M. Ibe and T.T. Yanagida, Dark matter candidates in a visible heavy QCD axion model, Phys. Rev. D 95 (2017) 095017 [arXiv:1702.00227] [INSPIRE].
A. Mitridate, M. Redi, J. Smirnov and A. Strumia, Cosmological implications of dark matter bound states, JCAP 05 (2017) 006 [arXiv:1702.01141] [INSPIRE].
I. Baldes and K. Petraki, Asymmetric thermal-relic dark matter: Sommerfeld-enhanced freeze-out, annihilation signals and unitarity bounds, JCAP 09 (2017) 028 [arXiv:1703.00478] [INSPIRE].
W.-Y. Keung, I. Low and Y. Zhang, Reappraisal of dark matter co-annihilating with a top or bottom partner, Phys. Rev. D 96 (2017) 015008 [arXiv:1703.02977] [INSPIRE].
Y. Kats, M. McCullough, G. Perez, Y. Soreq and J. Thaler, Colorful twisted top partners and partnerium at the LHC, JHEP 06 (2017) 126 [arXiv:1704.03393] [INSPIRE].
S.J. Lonsdale, M. Schroor and R.R. Volkas, Asymmetric dark matter and the hadronic spectra of hidden QCD, Phys. Rev. D 96 (2017) 055027 [arXiv:1704.05213] [INSPIRE].
S. Tulin and H.-B. Yu, Dark matter self-interactions and small scale structure, Phys. Rept. 730 (2018) 1 [arXiv:1705.02358] [INSPIRE].
S. Biondini and M. Laine, Re-derived overclosure bound for the inert doublet model, JHEP 08 (2017) 047 [arXiv:1706.01894] [INSPIRE].
E. Braaten, E. Johnson and H. Zhang, Zero-range effective field theory for resonant wino dark matter. Part I. Framework, JHEP 11 (2017) 108 [arXiv:1706.02253] [INSPIRE].
A.J. Markestad, Dark matter bound state formation for pseudo-scalar mediators, master’s thesis, Oslo U., Oslo, Norway (2017) [INSPIRE].
J. Harz and K. Petraki, Higgs enhancement for the dark matter relic density, Phys. Rev. D 97 (2018) 075041 [arXiv:1711.03552] [INSPIRE].
I. Baldes, M. Cirelli, P. Panci, K. Petraki, F. Sala and M. Taoso, Asymmetric dark matter: residual annihilations and self-interactions, SciPost Phys. 4 (2018) 041 [arXiv:1712.07489] [INSPIRE].
S.J. Lonsdale and R.R. Volkas, Comprehensive asymmetric dark matter model, Phys. Rev. D 97 (2018) 103510 [arXiv:1801.05561] [INSPIRE].
J. Ellis, J.L. Evans, F. Luo, K.A. Olive and J. Zheng, Stop coannihilation in the CMSSM and SubGUT models, Eur. Phys. J. C 78 (2018) 425 [arXiv:1801.09855] [INSPIRE].
M. Geller, S. Iwamoto, G. Lee, Y. Shadmi and O. Telem, Dark quarkonium formation in the early universe, JHEP 06 (2018) 135 [arXiv:1802.07720] [INSPIRE].
S. Biondini, Bound-state effects for dark matter with Higgs-like mediators, JHEP 06 (2018) 104 [arXiv:1805.00353] [INSPIRE].
J. Harz and K. Petraki, Radiative bound-state formation in unbroken perturbative non-Abelian theories and implications for dark matter, JHEP 07 (2018) 096 [arXiv:1805.01200] [INSPIRE].
E. Braaten, D. Kang and R. Laha, Production of dark-matter bound states in the early universe by three-body recombination, JHEP 11 (2018) 084 [arXiv:1806.00609] [INSPIRE].
R. Oncala and K. Petraki, Dark matter bound states via emission of scalar mediators, JHEP 01 (2019) 070 [arXiv:1808.04854] [INSPIRE].
T. Binder, L. Covi and K. Mukaida, Dark matter Sommerfeld-enhanced annihilation and bound-state decay at finite temperature, Phys. Rev. D 98 (2018) 115023 [arXiv:1808.06472] [INSPIRE].
A. Bhattacharya and T.R. Slatyer, Bound states of pseudo-Dirac dark matter, JCAP 03 (2019) 029 [arXiv:1812.03169] [INSPIRE].
J. Harz and K. Petraki, Higgs-mediated bound states in dark-matter models, JHEP 04 (2019) 130 [arXiv:1901.10030] [INSPIRE].
R. Laha and E. Braaten, Direct detection of dark matter in universal bound states, Phys. Rev. D 89 (2014) 103510 [arXiv:1311.6386] [INSPIRE].
S. Baek, P. Ko and W.-I. Park, Local Z2 scalar dark matter model confronting galactic GeV-scale γ-ray, Phys. Lett. B 747 (2015) 255 [arXiv:1407.6588] [INSPIRE].
P. Ko and Y. Tang, Self-interacting scalar dark matter with local Z3 symmetry, JCAP 05 (2014) 047 [arXiv:1402.6449] [INSPIRE].
P. Ko and Y. Tang, Galactic center γ-ray excess in hidden sector DM models with dark gauge symmetries: local Z3 symmetry as an example, JCAP 01 (2015) 023 [arXiv:1407.5492] [INSPIRE].
L.M. Krauss and F. Wilczek, Discrete gauge symmetry in continuum theories, Phys. Rev. Lett. 62 (1989) 1221 [INSPIRE].
B. Batell, Dark discrete gauge symmetries, Phys. Rev. D 83 (2011) 035006 [arXiv:1007.0045] [INSPIRE].
E. Ma, Inception of self-interacting dark matter with dark charge conjugation symmetry, Phys. Lett. B 772 (2017) 442 [arXiv:1704.04666] [INSPIRE].
A. Ahmed, M. Duch, B. Grzadkowski and M. Iglicki, Multi-component dark matter: the vector and fermion case, Eur. Phys. J. C 78 (2018) 905 [arXiv:1710.01853] [INSPIRE].
M. Duerr, K. Schmidt-Hoberg and S. Wild, Self-interacting dark matter with a stable vector mediator, JCAP 09 (2018) 033 [arXiv:1804.10385] [INSPIRE].
M. Iglicki, Vector-fermion dark matter, Ph.D. thesis, Warsaw U., Warsaw, Poland (2018) [arXiv:1804.10289] [INSPIRE].
A. Ahmed, M. Duch, B. Grzadkowski and M. Iglicki, Vector-fermion dark matter model, Acta Phys. Polon. B 48 (2017) 2405 [INSPIRE].
J.B. Dent, S. Dutta and R.J. Scherrer, Thermal relic abundances of particles with velocity-dependent interactions, Phys. Lett. B 687 (2010) 275 [arXiv:0909.4128] [INSPIRE].
J.L. Feng, M. Kaplinghat and H.-B. Yu, Sommerfeld enhancements for thermal relic dark matter, Phys. Rev. D 82 (2010) 083525 [arXiv:1005.4678] [INSPIRE].
J. Zavala, M. Vogelsberger and S.D.M. White, Relic density and CMB constraints on dark matter annihilation with Sommerfeld enhancement, Phys. Rev. D 81 (2010) 083502 [arXiv:0910.5221] [INSPIRE].
L.G. van den Aarssen, T. Bringmann and Y.C. Goedecke, Thermal decoupling and the smallest subhalo mass in dark matter models with Sommerfeld-enhanced annihilation rates, Phys. Rev. D 85 (2012) 123512 [arXiv:1202.5456] [INSPIRE].
T. Binder, M. Gustafsson, A. Kamada, S.M.R. Sandner and M. Wiesner, Reannihilation of self-interacting dark matter, Phys. Rev. D 97 (2018) 123004 [arXiv:1712.01246] [INSPIRE].
S. Weinberg, Goldstone bosons as fractional cosmic neutrinos, Phys. Rev. Lett. 110 (2013) 241301 [arXiv:1305.1971] [INSPIRE].
S. Baek, P. Ko and W.-I. Park, Search for the Higgs portal to a singlet fermionic dark matter at the LHC, JHEP 02 (2012) 047 [arXiv:1112.1847] [INSPIRE].
R. Morris and N. Weiner, Low energy INTEGRAL positrons from exciting dark matter, arXiv:1109.3747 [INSPIRE].
D.P. Finkbeiner and N. Weiner, X-ray line from exciting dark matter, Phys. Rev. D 94 (2016) 083002 [arXiv:1402.6671] [INSPIRE].
D.P. Finkbeiner, L. Goodenough, T.R. Slatyer, M. Vogelsberger and N. Weiner, Consistent scenarios for cosmic-ray excesses from Sommerfeld-enhanced dark matter annihilation, JCAP 05 (2011) 002 [arXiv:1011.3082] [INSPIRE].
M. Beneke, C. Hellmann and P. Ruiz-Femenia, Non-relativistic pair annihilation of nearly mass degenerate neutralinos and charginos III. Computation of the Sommerfeld enhancements, JHEP 05 (2015) 115 [arXiv:1411.6924] [INSPIRE].
R. Barbieri, R. Gatto and E. Remiddi, Singular binding dependence in the hadronic widths of 1++ and 1+− heavy quark anti-quark bound states, Phys. Lett. B 61 (1976) 465 [INSPIRE].
R. Barbieri, M. Caffo and E. Remiddi, Gluon jets from quarkonia, Nucl. Phys. B 162 (1980) 220 [INSPIRE].
R. Barbieri, M. Caffo, R. Gatto and E. Remiddi, Strong QCD corrections to p wave quarkonium decays, Phys. Lett. B 95 (1980) 93 [INSPIRE].
R. Barbieri, M. Caffo, R. Gatto and E. Remiddi, QCD corrections to P wave quarkonium decays, Nucl. Phys. B 192 (1981) 61.
G.T. Bodwin, E. Braaten, T.C. Yuan and G. Lepage, P wave charmonium production in B meson decays, Phys. Rev. D 46 (1992) 3703 [hep-ph/9208254] [INSPIRE].
G.T. Bodwin, E. Braaten and G. Lepage, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Phys. Rev. D 51 (1995) 1125 [Erratum ibid. 55 (1997) 5853] [hep-ph/9407339] [INSPIRE].
K. Blum, R. Sato and T.R. Slatyer, Self-consistent calculation of the Sommerfeld enhancement, JCAP 06 (2016) 021 [arXiv:1603.01383] [INSPIRE].
Y.-L. Tang and G.-L. Zhou, Calculations of the Sommerfeld effect in a unified wave function framework, Phys. Rev. D 99 (2019) 036016 [arXiv:1806.10124] [INSPIRE].
T.R. Slatyer, The Sommerfeld enhancement for dark matter with an excited state, JCAP 02 (2010) 028 [arXiv:0910.5713] [INSPIRE].
D. Barducci et al., Collider limits on new physics within MicrOMEGAs4.3, Comput. Phys. Commun. 222 (2018) 327 [arXiv:1606.03834] [INSPIRE].
G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs4.1: two dark matter candidates, Comput. Phys. Commun. 192 (2015) 322 [arXiv:1407.6129] [INSPIRE].
M.B. Wise and Y. Zhang, Stable bound states of asymmetric dark matter, Phys. Rev. D 90 (2014) 055030 [Erratum ibid. 91 (2015) 039907] [arXiv:1407.4121] [INSPIRE].
Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs cross sections: 1. Inclusive observables, arXiv:1101.0593 [INSPIRE].
S. Dittmaier et al., Handbook of LHC Higgs cross sections: 2. Differential distributions, arXiv:1201.3084 [INSPIRE].
LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs cross sections: 3. Higgs properties, arXiv:1307.1347 [INSPIRE].
D.A. Dicus and V.S. Mathur, Upper bounds on the values of masses in unified gauge theories, Phys. Rev. D 7 (1973) 3111 [INSPIRE].
B.W. Lee, C. Quigg and H.B. Thacker, The strength of weak interactions at very high-energies and the Higgs boson mass, Phys. Rev. Lett. 38 (1977) 883 [INSPIRE].
B.W. Lee, C. Quigg and H.B. Thacker, Weak interactions at very high-energies: the role of the Higgs boson mass, Phys. Rev. D 16 (1977) 1519 [INSPIRE].
M. Lüscher and P. Weisz, Is there a strong interaction sector in the standard lattice Higgs model?, Phys. Lett. B 212 (1988) 472 [INSPIRE].
W.J. Marciano, G. Valencia and S. Willenbrock, Renormalization group improved unitarity bounds on the Higgs boson and top quark masses, Phys. Rev. D 40 (1989) 1725 [INSPIRE].
R. Essig et al., Working group report: new light weakly coupled particles, in Community summer study 2013: Snowmass on the Mississippi, (2013) [arXiv:1311.0029] [INSPIRE].
A. Fradette, M. Pospelov, J. Pradler and A. Ritz, Cosmological constraints on very dark photons, Phys. Rev. D 90 (2014) 035022 [arXiv:1407.0993] [INSPIRE].
J. Bramante, P.J. Fox, G.D. Kribs and A. Martin, Inelastic frontier: discovering dark matter at high recoil energy, Phys. Rev. D 94 (2016) 115026 [arXiv:1608.02662] [INSPIRE].
XENON collaboration, Search for WIMP inelastic scattering off Xenon nuclei with XENON100, Phys. Rev. D 96 (2017) 022008 [arXiv:1705.05830] [INSPIRE].
PandaX-II collaboration, Exploring the dark matter inelastic frontier with 79.6 days of PandaX-II data, Phys. Rev. D 96 (2017) 102007 [arXiv:1708.05825] [INSPIRE].
XMASS collaboration, Search for WIMP-129 Xe inelastic scattering with particle identification in XMASS-I, Astropart. Phys. 110 (2019) 1 [arXiv:1809.05358] [INSPIRE].
B. Ren, K. Tsumura and X.-G. He, A Higgs quadruplet for type III seesaw and implications for μ → eγ and μ − e conversion, Phys. Rev. D 84 (2011) 073004 [arXiv:1107.5879] [INSPIRE].
P.-H. Gu and X.-G. He, Electrophilic dark matter with dark photon: from DAMPE to direct detection, Phys. Lett. B 778 (2018) 292 [arXiv:1711.11000] [INSPIRE].
A. Das and B. Dasgupta, Selection rule for enhanced dark matter annihilation, Phys. Rev. Lett. 118 (2017) 251101 [arXiv:1611.04606] [INSPIRE].
T.R. Slatyer, Indirect dark matter signatures in the cosmic dark ages. I. Generalizing the bound on s-wave dark matter annihilation from Planck results, Phys. Rev. D 93 (2016) 023527 [arXiv:1506.03811] [INSPIRE].
F. Kahlhoefer, K. Schmidt-Hoberg and S. Wild, Dark matter self-interactions from a general spin-0 mediator, JCAP 08 (2017) 003 [arXiv:1704.02149] [INSPIRE].
M.E. Peskin and D.V. Schroeder, An introduction to quantum field theory, Addison-Wesley, Reading, MA, U.S.A. (1995).
M.S. Chanowitz and M.K. Gaillard, The TeV physics of strongly interacting W’s and Z’s, Nucl. Phys. B 261 (1985) 379 [INSPIRE].
P. Hoyer, Bound states — from QED to QCD, arXiv:1402.5005 [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 1910.04311
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Ko, P., Matsui, T. & Tang, YL. Dark matter bound state formation in fermionic Z2 DM model with light dark photon and dark Higgs boson. J. High Energ. Phys. 2020, 82 (2020). https://doi.org/10.1007/JHEP10(2020)082
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP10(2020)082