Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Strong Enumeration Reducibilities

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

We investigate strong versions of enumeration reducibility, the most important one being s-reducibility. We prove that every countable distributive lattice is embeddable into the local structure \(L(\mathfrak D_s)\) of the s-degrees. However, \(L(\mathfrak D_s)\) is not distributive. We show that on \(\Delta^{0}_{2}\) sets s-reducibility coincides with its finite branch version; the same holds of e-reducibility. We prove some density results for \(L(\mathfrak D_s)\). In particular \(L(\mathfrak D_s)\) is upwards dense. Among the results about reducibilities that are stronger than s-reducibility, we show that the structure of the \(\Delta^{0}_{2}\) bs-degrees is dense. Many of these results on s-reducibility yield interesting corollaries for Q-reducibility as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmad S. (1991) Embedding the diamond in the Σ2 enumeration degrees. J. Symbolic Logic, 50,195–212

    Google Scholar 

  2. Arslanov M.M. On a class of hypersimple incomplete sets. Mat. Zametki, 38, 872–874 (1985) 984–985 (English Translation)

    Google Scholar 

  3. Arslanov M., Barry Cooper S., Kalimullin I.S. (2003) Splitting properties of total e-degrees. Algebra and Logic, 42, 1–13

    Article  MathSciNet  Google Scholar 

  4. Bianchini C. Bounding Enumeration Degrees. PhD thesis, University of Siena (2000)

  5. Case J. (1971) Enumeration reducibility and partial degrees. Ann. Math. Logic, 2, 419–439

    Article  MATH  MathSciNet  Google Scholar 

  6. Cooper S.B. (1982) Partial degrees and the density problem. J. Symbolic Logic 47, 854–859

    Article  MATH  MathSciNet  Google Scholar 

  7. Cooper S.B. (1984) Partial degrees and the density problem. Part 2: The enumeration degrees of the Σ2 sets are dense. J. Symbolic Logic, 49, 503–513

    Google Scholar 

  8. Cooper S.B. (1987) Enumeration reducibility using bounded information: counting minimal covers. Z. Math. Logik Grundlag. Math. 33, 537–560

    Article  MATH  MathSciNet  Google Scholar 

  9. Cooper S.B. (1990) Enumeration reducibility, nondeterministic computations and relative computability of partial functions. In: Ambos-Spies K., Müller G.E., Sacks, (eds) Recursion Theory Week, Oberwolfach 1989, vol 1432 of Lecture Notes in Mathematics. Springer, Berlin Heidelberg Newyork, pp. 57–110

  10. Cooper S.B., Li A., Sorbi A., Yang Y. (2005) Bounding and nonbounding minimal pairs in the enumeration degrees. J. Symbolic Logic 70, 741–766

    Article  MATH  MathSciNet  Google Scholar 

  11. Cooper S.B., Sorbi A. (1996) Noncappable enumeration degrees below 0 e . J. Symbolic Logic 61, 1347–1363

    Article  MATH  MathSciNet  Google Scholar 

  12. Downey R.G., Laforte G., Nies A. (1998) Computably enumerable sets and quasi-reducibility. Ann. Pure Appl. Logic 95, 1–35

    Article  MATH  MathSciNet  Google Scholar 

  13. Downey R.G., Laforte G., Nies A. (1999) Addendum to “computably enumerable sets and quasi-reducibility”. Ann. Pure Appl. Logic 98, 295

    Article  MathSciNet  Google Scholar 

  14. Fischer P. Some Results on Recursively Enumerable Degrees of Weak Reducibilities. PhD thesis, Universität Bielefeld (1986)

  15. Fischer P., Ambos-Spies K. (1985) Q-degrees of r.e. sets. J. Symbolic Logic, 52(1): 317

    Google Scholar 

  16. Friedberg R.M., Rogers Jr.H. (1959) Reducibility and completeness for sets of integers. Z. Math. Logik Grundlag. Math., 5, 117–125

    Article  MATH  MathSciNet  Google Scholar 

  17. Gutteridge L. Some Results on Enumeration Reducibility. PhD Thesis, Simon Fraser University (1971)

  18. Gill J.T., III, Morris P.H. (1974) On subcreative sets and s-reducibility. J. Symbolic Logic, 39(4): 669–677

    Article  MathSciNet  Google Scholar 

  19. Jockusch C.G., Jr. (1968) Semirecursive sets and positive reducibility. Trans. Am. Math. Soc., 131, 420–436

    Article  MATH  MathSciNet  Google Scholar 

  20. Lachlan A.H., hore R.A. (1992) The n-rea enumeration degrees are dense. Arch. Math. Logic, 31, 277–285

    Article  MATH  MathSciNet  Google Scholar 

  21. Lagemann J. Embedding Theorems in the Reducibility Ordering of the Partial Degrees. PhD Thesis M. I. T. (1972)

  22. McEvoy K. The Structure of the Enumeration Degrees. PhD thesis, School of Mathematics, University of Leeds (1984)

  23. McEvoy K. (1985) Jumps of quasi–minimal enumeration degrees. J. Symbolic Logic 50, 839–848

    Article  MATH  MathSciNet  Google Scholar 

  24. McEvoy K., Cooper S.B. (1985) On minimal pairs of enumeration degrees. J. Symbolic Logic 50, 983–1001

    Article  MATH  MathSciNet  Google Scholar 

  25. Odifreddi P. (1989) Classical Recursion Theory, vol I. North–Holland Publishing Co., Amsterdam

    Google Scholar 

  26. Odifreddi P. (1999) Classical Recursion Theory vol II. North–Holland Publishing Co., Amsterdam

    MATH  Google Scholar 

  27. Omanadze R.Sh.: On the upper semilattice of recursively enumerable s Q-degrees. Algebra and Logic 30:265–271 (1992) (English translation)

    Google Scholar 

  28. Polyakov E.A., Rozinas M.G. (1977) Enumeration reducibilities. Siberian Math. J. 18(4): 594–599

    Article  Google Scholar 

  29. Rogers H.Jr. (1967) Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York

    MATH  Google Scholar 

  30. Sacks G.E. (1963) On the degrees less than 0’. Ann. of Math. 77, 211–231

    Article  MathSciNet  Google Scholar 

  31. Soare R.I. (1977) Computational complexity, speedable and levelable sets. J. Symbolic Logic 42, 545–563

    Article  MathSciNet  Google Scholar 

  32. Soare R.I. Recursively Enumerable Sets and Degrees. Perspectives in Mathematical Logic, Omega Series. Springer Berlin Heidelberg Newyork (1987)

  33. Sorbi A. (1997) The enumeration degrees of the \({\Sigma}^{0}_{2}\) sets. In: Sorbi A. (ed) Complexity, Logic and Recursion Theory. Marcel Dekker, New York, pp. 303–330

    Google Scholar 

  34. Sorbi A. Embeddings into the enumeration degrees. In: Goncharov S. (ed.) Proceedings of the international conference “Logic and Applications”, honouring Yu. L. Ershov on his 60-th birthday; and of the International Conference on mathematical Logic, honouring A. L. Malt’sev on his 90-th birthday anniversary and the 275-th anniversary of the Russian Academy of Sciences, pp. 144–164. Novosibirsk (2002)

  35. Watson P. (1990) On restricted forms of enumeration reducibility. Ann. Pure Appl. Logic 49, 75–96

    Article  MATH  MathSciNet  Google Scholar 

  36. Zacharov S.D. (1984) e- and s- degrees. Algebra and Logic 23, 273–281

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Sh. Omanadze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Omanadze, R.S., Sorbi, A. Strong Enumeration Reducibilities. Arch. Math. Logic 45, 869–912 (2006). https://doi.org/10.1007/s00153-006-0012-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-006-0012-4

Keywords

Mathematics Subject Classification (2000)