Abstract
We investigate strong versions of enumeration reducibility, the most important one being s-reducibility. We prove that every countable distributive lattice is embeddable into the local structure \(L(\mathfrak D_s)\) of the s-degrees. However, \(L(\mathfrak D_s)\) is not distributive. We show that on \(\Delta^{0}_{2}\) sets s-reducibility coincides with its finite branch version; the same holds of e-reducibility. We prove some density results for \(L(\mathfrak D_s)\). In particular \(L(\mathfrak D_s)\) is upwards dense. Among the results about reducibilities that are stronger than s-reducibility, we show that the structure of the \(\Delta^{0}_{2}\) bs-degrees is dense. Many of these results on s-reducibility yield interesting corollaries for Q-reducibility as well.
Similar content being viewed by others
References
Ahmad S. (1991) Embedding the diamond in the Σ2 enumeration degrees. J. Symbolic Logic, 50,195–212
Arslanov M.M. On a class of hypersimple incomplete sets. Mat. Zametki, 38, 872–874 (1985) 984–985 (English Translation)
Arslanov M., Barry Cooper S., Kalimullin I.S. (2003) Splitting properties of total e-degrees. Algebra and Logic, 42, 1–13
Bianchini C. Bounding Enumeration Degrees. PhD thesis, University of Siena (2000)
Case J. (1971) Enumeration reducibility and partial degrees. Ann. Math. Logic, 2, 419–439
Cooper S.B. (1982) Partial degrees and the density problem. J. Symbolic Logic 47, 854–859
Cooper S.B. (1984) Partial degrees and the density problem. Part 2: The enumeration degrees of the Σ2 sets are dense. J. Symbolic Logic, 49, 503–513
Cooper S.B. (1987) Enumeration reducibility using bounded information: counting minimal covers. Z. Math. Logik Grundlag. Math. 33, 537–560
Cooper S.B. (1990) Enumeration reducibility, nondeterministic computations and relative computability of partial functions. In: Ambos-Spies K., Müller G.E., Sacks, (eds) Recursion Theory Week, Oberwolfach 1989, vol 1432 of Lecture Notes in Mathematics. Springer, Berlin Heidelberg Newyork, pp. 57–110
Cooper S.B., Li A., Sorbi A., Yang Y. (2005) Bounding and nonbounding minimal pairs in the enumeration degrees. J. Symbolic Logic 70, 741–766
Cooper S.B., Sorbi A. (1996) Noncappable enumeration degrees below 0′ e . J. Symbolic Logic 61, 1347–1363
Downey R.G., Laforte G., Nies A. (1998) Computably enumerable sets and quasi-reducibility. Ann. Pure Appl. Logic 95, 1–35
Downey R.G., Laforte G., Nies A. (1999) Addendum to “computably enumerable sets and quasi-reducibility”. Ann. Pure Appl. Logic 98, 295
Fischer P. Some Results on Recursively Enumerable Degrees of Weak Reducibilities. PhD thesis, Universität Bielefeld (1986)
Fischer P., Ambos-Spies K. (1985) Q-degrees of r.e. sets. J. Symbolic Logic, 52(1): 317
Friedberg R.M., Rogers Jr.H. (1959) Reducibility and completeness for sets of integers. Z. Math. Logik Grundlag. Math., 5, 117–125
Gutteridge L. Some Results on Enumeration Reducibility. PhD Thesis, Simon Fraser University (1971)
Gill J.T., III, Morris P.H. (1974) On subcreative sets and s-reducibility. J. Symbolic Logic, 39(4): 669–677
Jockusch C.G., Jr. (1968) Semirecursive sets and positive reducibility. Trans. Am. Math. Soc., 131, 420–436
Lachlan A.H., hore R.A. (1992) The n-rea enumeration degrees are dense. Arch. Math. Logic, 31, 277–285
Lagemann J. Embedding Theorems in the Reducibility Ordering of the Partial Degrees. PhD Thesis M. I. T. (1972)
McEvoy K. The Structure of the Enumeration Degrees. PhD thesis, School of Mathematics, University of Leeds (1984)
McEvoy K. (1985) Jumps of quasi–minimal enumeration degrees. J. Symbolic Logic 50, 839–848
McEvoy K., Cooper S.B. (1985) On minimal pairs of enumeration degrees. J. Symbolic Logic 50, 983–1001
Odifreddi P. (1989) Classical Recursion Theory, vol I. North–Holland Publishing Co., Amsterdam
Odifreddi P. (1999) Classical Recursion Theory vol II. North–Holland Publishing Co., Amsterdam
Omanadze R.Sh.: On the upper semilattice of recursively enumerable s Q-degrees. Algebra and Logic 30:265–271 (1992) (English translation)
Polyakov E.A., Rozinas M.G. (1977) Enumeration reducibilities. Siberian Math. J. 18(4): 594–599
Rogers H.Jr. (1967) Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York
Sacks G.E. (1963) On the degrees less than 0’. Ann. of Math. 77, 211–231
Soare R.I. (1977) Computational complexity, speedable and levelable sets. J. Symbolic Logic 42, 545–563
Soare R.I. Recursively Enumerable Sets and Degrees. Perspectives in Mathematical Logic, Omega Series. Springer Berlin Heidelberg Newyork (1987)
Sorbi A. (1997) The enumeration degrees of the \({\Sigma}^{0}_{2}\) sets. In: Sorbi A. (ed) Complexity, Logic and Recursion Theory. Marcel Dekker, New York, pp. 303–330
Sorbi A. Embeddings into the enumeration degrees. In: Goncharov S. (ed.) Proceedings of the international conference “Logic and Applications”, honouring Yu. L. Ershov on his 60-th birthday; and of the International Conference on mathematical Logic, honouring A. L. Malt’sev on his 90-th birthday anniversary and the 275-th anniversary of the Russian Academy of Sciences, pp. 144–164. Novosibirsk (2002)
Watson P. (1990) On restricted forms of enumeration reducibility. Ann. Pure Appl. Logic 49, 75–96
Zacharov S.D. (1984) e- and s- degrees. Algebra and Logic 23, 273–281
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Omanadze, R.S., Sorbi, A. Strong Enumeration Reducibilities. Arch. Math. Logic 45, 869–912 (2006). https://doi.org/10.1007/s00153-006-0012-4
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00153-006-0012-4