Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Dissection of solutions in cooperative game theory using representation techniques

  • Original Paper
  • Published:
International Journal of Game Theory Aims and scope Submit manuscript

Abstract

We compute a decomposition for the space of cooperative TU-games under the action of the symmetric group S n . In particular we identify all irreducible subspaces that are relevant to the study of symmetric linear solutions – namely those that are isomorphic to the irreducible summands of \(\mathbb{R}^n\). We then use such decomposition to derive, in a very economical way, some old and some new results for linear symmetric solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amer R, Derks AR, Giménez JM, (2003) On cooperative games, inseparable by semivalues. Int J Game Theory 32(2):181–188

    Article  Google Scholar 

  • Dubey P, Neyman A, Weber RJ (1981) Value Theory without Efficiency. Math Oper Res 6(1):122–128

    Article  Google Scholar 

  • Driessen T, Radzik T (2002) Extensions of Hart and Mas-Collel’s consistency to efficient, linear and symmetric values for TU-games. In: ICM2002 GTA Proceedings volume. Hongwei, Petrosjan, eds, Quingdao Publishing House, 129–146

  • Fulton W, Harris J (1991) Representation theory; a first course. Graduate texts in mathematics. vol. 129 Springer, Berlin Heidelberg New York

    Google Scholar 

  • Kalai E, Samet D (1987) On weighted Shapley values. Int J Game Theory 16:205–222

    Article  Google Scholar 

  • Kleinberg NL, Weiss JH (1985) Equivalent N-person games and the null space of Shapley Value. Math Oper Res 10(2):233–243

    Google Scholar 

  • Kultti K, Salonen H (2005) Minimum norm solutions for cooperative games. preprint

  • Myerson RB (1991) Game theory: analysis of conflict. Harvard University Press

  • Shapley LS (1953) A value for n-person games. In: Kulin H, Tucker AW (eds) Contributions to the theory of games, vol. 2, Annals of Mathematics Studies Vol. 28. Princeton University Press, Princeton, pp. 307–312

    Google Scholar 

  • Weber RJ (1988) Probabilistic values for games. In: Roth AE (ed) The Shapley value. Essays in honor of Lloyd S. Shapley. pp 101–120

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Sánchez-Sánchez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernández-Lamoneda, L., Juárez, R. & Sánchez-Sánchez, F. Dissection of solutions in cooperative game theory using representation techniques. Int J Game Theory 35, 395–426 (2007). https://doi.org/10.1007/s00182-006-0036-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00182-006-0036-3

Keywords