Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A unified approach to portfolio optimization with linear transaction costs

  • Published:
Mathematical Methods of Operations Research Aims and scope Submit manuscript

Abstract

In this paper we study the continuous time optimal portfolio selection problem for an investor with a finite horizon who maximizes expected utility of terminal wealth and faces transaction costs in the capital market. It is well known that, depending on a particular structure of transaction costs, such a problem is formulated and solved within either stochastic singular control or stochastic impulse control framework. In this paper we propose a unified framework, which generalizes the contemporary approaches and is capable to deal with any problem where transaction costs are a linear/piecewise-linear function of the volume of trade. We also discuss some methods for solving numerically the problem within our unified framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akian M, Menaldi JL, Sulem A (1996) On an investment-consumption model with transaction costs. SIAM J Control Optim 34(1):329–364

    Article  MATH  MathSciNet  Google Scholar 

  • Atkinson C,Wilmott, P (1995) Portfolio management with transaction costs: an asymptotic analysis of the morton and pliska model. Math Finance 5:395–422

    Article  Google Scholar 

  • Barles G (1997) Convergence of numerical schemes for degenerate parabolic equations arising in finance theory. In: Numerical methods in finance, pp 1–21. Cambridge University Press, London.

  • Barles G, Soner HM (1998) Option pricing with transaction costs and a nonlinear black-scholes equation. Finance Stochastics 2:369–397

    Article  MATH  MathSciNet  Google Scholar 

  • Barles G, Souganides PE (1991) Convergence of approximation schemes for fully nonlinear second order equations. Asymptotic Anal 4(3):271–8283

    MATH  MathSciNet  Google Scholar 

  • Boyle PP, Lin X (1997) Optimal portfolio selection with transaction costs. North Am Actuar J 1(2):27–39

    MATH  MathSciNet  Google Scholar 

  • Clewlow L, Hodges S (1997) Optimal delta-hedging under transaction costs. J Econ Dyn Control 21:1353–1376

    Article  MATH  MathSciNet  Google Scholar 

  • Cox JM, Ross SA, Rubinstein M (1979) Option pricing: a simplified approach. J Financ Econ 7:229–263

    Article  MATH  Google Scholar 

  • Crandall M, Ishii H, Lions PL (1992) A user’s guide to viscosity solutions. Bull Am Math Soc 27:1–67

    Article  MATH  MathSciNet  Google Scholar 

  • Davis MHA, Norman AR (1990) Portfolio selection with transaction costs. Math Oper Res 15(4):676–713

    MATH  MathSciNet  Google Scholar 

  • Davis MHA, Panas VG (1994) The writing price of a european contingent claim under proportional transaction costs. Comput Appl Math 13:115–157

    MATH  MathSciNet  Google Scholar 

  • Davis MHA, PanasVG, Zariphopoulou T (1993) European option pricing with transaction costs. SIAM J Control Optim 31(2):470–493

    Article  MATH  MathSciNet  Google Scholar 

  • Davis MHA, Zariphopoulou T (1995) American options and transaction fees. In: Davis MHA et al (eds) Mathematical finance. Springer, Berlin Heidelberg NewYork

    Google Scholar 

  • Demchuk A (2002) Portfolio optimization with concave transaction costs. HEC-University of Lausanne and FAME Research Paper no. 103.

  • Eastham J, Hastings K (1988) Optimal impulse control of portfolios. Math Oper Res 13:588–605

    MATH  MathSciNet  Google Scholar 

  • Fleming W, Soner HM (1993) Controlled Markov processes and viscosity solutions. Springer, Berlin Heidelberg NewYork

    MATH  Google Scholar 

  • Framstad NC, øksendal B, Sulem A (2001) Optimal consumption and portfolio in a jump diffusion market with proportional transaction costs. J Math Econ 35(2):233–259

    Article  MATH  Google Scholar 

  • Genotte G, Jung A (1994) Investment strategies under transaction costs: the finite horizon case. Manage Sci 38(11):385–404

    Article  Google Scholar 

  • Hastings K (1992) Impulse control of portfolios with jumps and transaction costs. Commun Stat Stochastic Models 8:222–239

    MathSciNet  Google Scholar 

  • He H (1990) Convergence from discrete to continuous time contingent claim prices. Rev Financ Stud 3:523–546

    Article  Google Scholar 

  • Hodges SD, Neuberger A (1989) Optimal replication of contingent claims under transaction costs. Rev Futures Mark 8:222–239

    Google Scholar 

  • Janečcek K, Shreve S (2004) Asymptotic analysis for optimal investment and consumption with transaction costs. Finance Stochastics 8(2):(forthcoming).

    Google Scholar 

  • Korn R (1998) Portfolio optimization with strictly positive transaction costs and impulse controls. Finance Stochastics 2:85–114

    Article  MATH  MathSciNet  Google Scholar 

  • Korn R (1999) Some applications of impulse control in mathematical finance. Math Methods Oper Res 50(3):493–518

    Article  MATH  MathSciNet  Google Scholar 

  • Korn R (2004) Realism and practicality of transaction cost approaches in continuous-time portfolio optimisation. Math Methods Oper Res 60(2): 165–174

    Article  MATH  MathSciNet  Google Scholar 

  • Kushner HJ, Martins LF (1991) Numerical methods for stochastic singular control problems. SIAM J Control Optim 29(6):1443–1475

    Article  MATH  MathSciNet  Google Scholar 

  • Merton RC (1971) Optimum consumption and portfolio rules in a continuous-time model. J Econ Theory 3:373–413

    Article  MathSciNet  Google Scholar 

  • Morton KW, Mayers DF (1994) Numerical solution of partial differential equations. Cambridge University Press, London

    MATH  Google Scholar 

  • øksendal B, SulemA(2002) Optimal consumption and portfolio with both fixed and proportional transaction costs. SIAM J Control Optim 40:1765–1790

    Article  MathSciNet  Google Scholar 

  • Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1992) Numerical recipes in C: the art of scientific computing. Cambridge University Press, London

    Google Scholar 

  • Shreve S, Soner HM (1994) Optimal investment and consumption with transaction costs. Ann Appl Probab 4:609–692

    Article  MATH  MathSciNet  Google Scholar 

  • Whalley AE, Wilmott P (1997) An asymptotic analysis of an optimal hedging model for option pricing with transaction costs. Math Finance 7(3):307–324

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeri I. Zakamouline.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakamouline, V.I. A unified approach to portfolio optimization with linear transaction costs. Math Meth Oper Res 62, 319–343 (2005). https://doi.org/10.1007/s00186-005-0005-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00186-005-0005-9

Keywords