Abstract
A methodology is developed to analyze a multivariate linear model, which occurs in many geodetic and geophysical applications. Proper analysis of multivariate GPS coordinate time-series is considered to be an application. General, special, and more practical stochastic models are adopted to assess the noise characteristics of multivariate time-series. The least-squares variance component estimation (LS-VCE) is applied to estimate full covariance matrices among different series. For the special model, it is shown that the multivariate time-series can be estimated separately, and that the (cross) correlation between series propagates directly into the correlation between the corresponding parameters in the functional model. The time-series of five permanent GPS stations are used to show how the correlation between series propagates into the site velocities. The results subsequently conclude that the general model is close to the more practical model, for which an iterative algorithm is presented. The results also indicate that the correlation between series of different coordinate components per station is not significant. However, the spatial correlation between different stations for individual components is significant (a correlation of 0.9 over short baselines) both for white and for colored noise components.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Altamimi Z, Sillard P, Boucher C (2002) ITRF2000: a new release of the International Terrestrial Reference Frame for earth science applications. Journal of Geophysical Research 107(B10, 2214). doi:10.1029/2001JB000561
Amiri-Simkooei AR (2007) Least-squares variance component estimation: theory and GPS applications. PhD Thesis, Delft University of Technology, Publication on Geodesy, 64, Netherlands Geodetic Commission, Delft, http://repository.tudelft.nl/file/552363/372527
Amiri-Simkooei AR, Tiberius CCJM (2007) Assessing receiver noise using GPS short baseline time series. GPS Solut 11(1): 21–35
Amiri-Simkooei AR, Tiberius CCJM, Teunissen PJG (2007) Assessment of noise in GPS coordinate time series: methodology and results. J Geophys Res 112: B07413. doi:10.1029/2006JB004913
Barnes JB (2002) Real time kinematic GPS and multipath: characterisation and improved least squares modelling. PhD Thesis, Department of Geomatics, University of Newcastle upon Tyne
Beavan J (2005) Noise properties of continuous GPS data from concrete pillar geodetic monuments in New Zealand and comparison with data from U.S. deep drilled braced monuments. J Geophys Res 110(B08410). doi:10.1029/2005JB003642
Beutler G, Rothacher M, Schaer S, Springer TA, Kouba J, Neilan RE (1999) The International GPS Service (IGS): an interdisciplinary service in support of Earth sciences. Adv Space Res 23(4): 631–635
Bischoff W, Heck B, Howind J, Teusch A (2005) A procedure for testing the assumption of homoscedasticity in least squares residuals: a case study of GPS carrier-phase observations. J Geod 78: 397–404
Bischoff W, Heck B, Howind J, Teusch A (2006) A procedure for estimating the variance function of linear models and for checking the appropriateness of estimated variances: a case study of GPS carrier-phase observations. J Geod 79: 694–704
Bock Y, Wdowinski S, Fang P, Zhang J, Williams S, Johnson H, Behr J, Genrich J, Dean J, van Domselaar M, Agnew D, Wyatt F, Stark K, Oral B, Hudnut K, King R, Herring T, Dinardo S, Young W, Jackson D, Gurtner W (1997) Southern California Permanent GPS Geodetic Array: Continuous measurements of regional crustal deformation between the 1992 Landers and 1994 Northridge earthquakes. J Geophys Res 102(B8): 18013–18033
Bona P (2000) Precision, cross correlation, and time correlation of GPS phase and code observations. GPS Solut 4(2): 3–13
Bos MS, Fernandes RMS, Williams SDP, Bastos L (2008) Fast error analysis of continuous GPS observations. J Geod 82: 157–166. doi:10.1007/s00190-007-0165-x
Calais E (1999) Continuous GPS measurements across the Western Alps, 1996–1998. Geophys J Int 138: 221–230
Caspary WF (1987) Concepts of network and deformation analysis. Tech. rep., School of Surveying, The University of New South Wales, Kensington
Chen YQ, Chrzanowski A, Kavouras M (1990) Assessment of observations using minimum norm quadratic unbiased estimation (MINQUE). CISM J ACSGS 44: 39–46
Crocetto N, Gatti M, Russo P (2000) Simplified formulae for the BIQUE estimation of variance components in disjunctive observation groups. J Geod 74: 447–457
Dong D, Fang P, Bock Y, Webb F, Prawirodirdjo L, Kedar S, Jamason P (2006) Spatiotemporal filtering using principal component analysis and Karhunen-Loeve expansion approaches for regional GPS network analysis. J Geophys Res 111: B03405. doi:10.01029/02005JB003806
Fotopoulos G (2005) Calibration of geoid error models via a combined adjustment of ellipsoidal, orthometric and gravimetric geoid height data. J Geod 79: 111–123. doi:10.1007/s00190-005-0449-y
Johnson HO, Agnew DC (2000) Correlated noise in geodetic time series. U.S. Geol. Surv. Final Tech. Rep., FTR-1434-HQ-97-GR-03155
Kenyeres A, Bruyninx C (2004) EPN coordinate time series monitoring for reference frame maintenance. GPS Solut 8: 200–209. doi:10.1007/s10291-004-0104-8
Koch KR (1978) Schätzung von Varianzkomponenten. Allgemeine Vermessungs Nachrichten 85: 264–269
Koch KR (1986) Maximum likelihood estimate of variance components. Bull Géod 60:329–338, ideas by A.J. Pope
Koch KR (1999) Parameter estimation and hypothesis testing in linear models. Springer, Berlin
Kusche J (2003a) A Monte-Carlo technique for weight estimation in satellite geodesy. J Geod 76: 641–652
Kusche J (2003b) Noise variance estimation and optimal weight determination for GOCE gravity recovery. Adv Geosci 1: 81–85
Langbein J (2004) Noise in two-color electronic distance meter measurements revisited. J Geophys Res 109: B04406. doi:10.1029/2003JB002819
Langbein J (2008) Noise in GPS displacement measurements from southern california and southern nevada. J Geophys Res. doi:10.1029/2007JB005247 (in press)
Langbein J, Bock Y (2004) High-rate real-time GPS network at Parkfield: Utility for detecting fault slip and seismic displacements. Geophys Res Lett 31: L15S20. doi:10.1029/2003GL019408
Langbein J, Johnson H (1997) Correlated errors in geodetic time series: implications for time-dependent deformation. J Geophys Res 102(B1): 591–603
Magnus JR (1988) Linear structures. Oxford University Press, London School of Economics and Political Science, Charles Griffin & Company LTD, London
Mao A, Harrison CGA, Dixon TH (1999) Noise in GPS coordinate time series. J Geophys Res 104(B2): 2797–2816
Nikolaidis R, Bock Y, de Jonge PJ, Shearer P, Agnew DC, van Domselaar M (2001) Seismic wave observations with the global positioning system. J Geophys Res 106: 21,897–21,916
Nikolaidis RM (2002) Observation of geodetic and seismic deformation with the global positioning system. PhD Thesis, University of California, San Diego
Penna NT, Stewart MP (2003) Aliased tidal signatures in continuous GPS height time series. Geophys Res Lett 30(23): 2184. doi:10.1029/2003GL018828
Penna NT, King MA, Stewart MP (2007) GPS height time series: Short-period origins of spurious long-period signals. J Geophys Res 112(B02402). doi:10.1029/2005JB004047
Perfetti N (2006) Detection of station coordinate discontinuities within the Italian GPS Fiducial Network. J Geod 80(7): 381–396. doi:10.1007/s00190-006-0080-6
Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1992) Numerical Recipes. Cambridge University Press, New York
Rao CR (1971) Estimation of variance and covariance components—MINQUE theory. J Multivariate Anal 1: 257–275
Rao CR, Kleffe J (1988) Estimation of variance components and applications, vol 3. Series in Statistics and Probability, North-Holland
Ray J, Altamimi Z, Collilieux X, van Dam T (2007) Anomalous harmonics in the spectra of GPS position estimates. GPS Solut doi:10.1007/s10291-007-0067-7
Satirapod C, Wang J, Rizos C (2002) A simplified MINQUE procedure for the estimation of variance–covariance components of GPS observables. Surv Rev 36(286): 582–590
Schaffrin B (1981a) Ausgleichung mit Bedingungs-Ungleichungen. Allgemeine Vermessungs Nachrichten 88: 227–238
Schaffrin B (1981b) Best invariant covariance component estimators and its application to the generalized multivariate adjustment of heterogeneous deformation observations. Bull Géod 55: 73–85
Schaffrin B (1983) Varianz-kovarianz-komponenten-schätzung bei der ausgleichung heterogener wiederholungsmessungen C282, Deutsche Geodätische Kommission, München
Schön S, Brunner FK (2008a) Atmospheric turbulence theory applied to GPS carrier-phase data. J Geod 82(1): 47–57
Schön S, Brunner FK (2008b) A proposal for modelling physical correlations of GPS phase observations. J Geod. doi:10.1007/s00190-008-0211-3 (in press)
Sjöberg LE (1983) Unbiased estimation of variance–covariance components in condition adjustment with unknowns – a MINQUE approach. Zeits ür Vermessungswesen 108(9): 382–387
Stewart MP, Penna NT, Lichti DD (2005) Investigating the propagation mechanism of unmodelled systematic errors on coordinate time series estimated using least squares. J Geod 79: 479–489. doi:10.1007/s00190-005-0478-6
Teferle FN, Bingley R, Williams SDP, Baker T, Dodson A (2006) Using continuous GPS and absolute gravity to separate vertical land movements and changes in sea level at tide gauges in the UK. Philos Trans Roy Soc A 364: 917–930
Teferle FN, Williams SDP, Kierulf HP, Bingley RM, Plag HP (2008) A continuous GPS coordinate time series analysis strategy for high-accuracy vertical land movements. Phys Chem Earth 33: 205– 216
Teunissen PJG, Amiri-Simkooei AR (2006) Variance component estimation by the method of least-squares. In: Xu P, Liu J, Dermanis A (eds) VI Hotine-Marussi symposium of theoretical and computational geodesy, IAG Symposia, vol 132, 29 May–2 June, 2006, China. 132. Springer, Berlin, 273–279
Teunissen PJG, Amiri-Simkooei AR (2008) Least-squares variance component estimation. J Geod 82(2): 65–82. doi:10.1007/s00190-007-0157-x
Teunissen PJG, Jonkman NF, Tiberius CCJM (1998) Weighting GPS dual frequency observations: bearing the cross of cross-correlation. GPS Solut 2(2): 28–37
Tiberius CCJM, Kenselaar F (2000) Estimation of the stochastic model for GPS code and phase observables. Surv Rev 35(277): 441–454
Tiberius CCJM, Kenselaar F (2003) Variance component estimation and precise GPS positioning: case study. J Surv Eng 129(1): 11–18
Wang J, Stewart MP, Tsakiri M (1998) Stochastic modeling for static GPS baseline data processing. J Surv Eng 124(4): 171–181
Wdowinski S, Bock Y, Zhang J, Fang P, Genrich J (1997) Southern california permanent GPS geodetic array: spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 landers earthquake. J Geophys Res 102: 18,057–18,070
Williams SDP (2003a) The effect of coloured noise on the uncertainties of rates estimated from geodetic time series. J Geod 76: 483–494
Williams SDP (2003) Offsets in global positioning system time series. J Geophys Res 108(B6): 2310. doi:10.1029/2002JB002156
Williams SDP, Bock Y, Fang P, Jamason P, Nikolaidis RM, Prawirodirdjo L, Miller M, Johnson DJ (2004) Error analysis of continuous GPS position time series. J Geophys Res 109: B03412. doi:10.1029/2003JB002741
Wyatt FK (1982) Displacement of surface monuments: horizontal motion. J Geophys Res 87: 979–989
Xu PL, Shen YZ, Fukuda Y, Liu YM (2006) Variance component estimation in linear inverse ill-posed models. J Geod 80: 69–81
Xu PL, Liu YM, Shen YZ (2007) Estimability analysis of variance and covariance components. J Geod 81: 593–602. doi:10.1007/s00190-006-0122-0
Zhang J, Bock Y, Johnson H, Fang P, Williams S, Genrich J, Wdowinski S, Behr J (1997) Southern California permanent GPS geodetic array: error analysis of daily position estimates and site velocitties. J Geophys Res 102: 18035–18055
Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102: 5005–5017
Acknowledgments
I would like to acknowledge my colleagues Prof. P.J.G.Teunissen and Dr.C.C.J.MTiberius for their useful discussions on an earlier version of this paper. I am also thankful to Prof. W. Featherstone, Dr. S.D.P. Williams and the anonymous reviewers for their helpful comments to significantly improve the presentation of the paper.
Open Access
This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Amiri-Simkooei, A.R. Noise in multivariate GPS position time-series. J Geod 83, 175–187 (2009). https://doi.org/10.1007/s00190-008-0251-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00190-008-0251-8