Abstract
This work constructs a new class of multirate schemes based on the recently developed generalized additive Runge–Kutta (GARK) methods (Sandu and Günther, SIAM J Numer Anal, 53(1):17–42, 2015). Multirate schemes use different step sizes for different components and for different partitions of the right-hand side based on the local activity levels. We show that the new multirate GARK family includes many well-known multirate schemes as special cases. The order conditions theory follows directly from the GARK accuracy theory. Nonlinear stability and monotonicity investigations show that these properties are inherited from the base schemes provided that additional coupling conditions hold.
Similar content being viewed by others
References
Günther, M., Hachtel, Ch., Sandu, A.: Multirate GARK schemes for multiphysical problems. In: Bartel, A. et al. (ed.) Proceedings of the SCEE2014. Springer, Berlin (2015) (to be published)
Günther, M., Sandu, A.: Multirate GARK methods. In: Technical Report CSL-TR-6/2013, Virginia Tech, Computational Science Laboratory (2013). arXiv:1310.6055
Higueras, I.: On strong stability preserving time discretization methods. J. Sci. Comput. 21, 193–223 (2004)
Higueras, I.: Monotonicity for Runge–Kutta methods: inner product norms. J. Sci. Comput. 24, 97–117 (2005)
Higueras, I.: Strong stability for additive Runge–Kutta methods. SIAM J. Numer. Anal. 44, 1735–1758 (2006)
Hundsdorfer, W., Mozartova, A., Savcenco, V.: Monotonicity conditions for multirate and partitioned explicit Runge–Kutta methods. In: Ansorge, R., Bijl, H., Meister, A., Sonar, T. (eds.) Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws, pp. 177–195. Springer, New York (2013)
Kennedy, Ch., Carpenter, M.: Additive Runge–Kutta schemes for convection–diffusion–reaction equations. Appl. Numer. Math. 44, 139–181 (2003)
Knoth, O., Wolke, R.: Implicit–explicit Runge–Kutta methods for computing atmospheric reactive flows. Appl. Numer. Math. 28, 327–341 (1998)
Kraaijevanger, J.F.B.M.: Contractivity of Runge–Kutta methods. BIT Numer. Math. 31, 482–528 (1991)
Kvaerno, A., Rentrop, P.: Low Order Multirate Runge–Kutta Methods in Electric Circuit Simulation, Preprint 99/1. University of Karlsruhe, IWRMM, Karlsruhe (1999)
Sandu, A., Günther, M.: A generalized-structure approach to additive Runge–Kutta methods. SIAM J. Numer. Anal. 53(1), 17–42 (2015)
Savcenco, V.: Construction of high-order multirate Rosenbrock methods for stiff ODEs. In: Technical Report MAS-E0716, Centrum voor Wiskunde en Informatica (2007)
Savcenco, V.: Comparison of the asymptotic stability properties for two multirate strategies. J. Comput. Appl. Math. 220, 508–524 (2008)
Savcenco, V.: Construction of a multirate Rodas method for stiff ODEs. J. Comput. Appl. Math. 225, 323–337 (2009)
Savcenco, V., Hundsdorfer, W., Verwer, J.G.: A multirate time stepping strategy for parabolic PDE. In: Technical Report MAS-E0516, Centrum voor Wiskundeen Informatica (2005)
Savcenco, V., Hundsdorfer, W., Verwer, J.G.: A multirate time stepping strategy for stiff ODEs. BIT 47, 137–155 (2007)
Schlegel, M., Knoth, O., Arnold, M., Wolke, R.: Multirate Runge–Kutta schemes for advection equations. J. Comput. Appl. Math. 226, 345–357 (2009)
Schlegel, M., Knoth, O., Arnold, M., Wolke, R.: Multirate implicit–explicit time integration schemes in atmospheric modelling. In: AIP Conference Proceedings, vol. 1281. International Conference of Numerical Analysis and Applied Mathematics, ICNAAM 2010, p. 1831 (2010)
Schlegel, M., Knoth, O., Arnold, M., Wolke, R.: Implementation of splitting methods for air pollution modeling. Geosci. Model Dev. Discuss. 4, 2937–2972 (2011)
Schlegel, M., Knoth, O., Arnold, M., Wolke, R.: Numerical solution of multiscale problems in atmospheric modeling. Appl. Numer. Math. 62, 1531–1543 (2012)
Wensch, J., Knoth, O., Galant, A.: Multirate infinitesimal step methods for atmospheric flow simulation. BIT 49, 449–473 (2009)
Acknowledgments
The work of A. Sandu has been supported in part by NSF through awards NSF OCI-8670904397, NSF CCF-0916493, NSF DMS-0915047, NSF CMMI-1130667, NSF CCF-1218454, AFOSR FA9550-12-1-0293-DEF, AFOSR 12-2640-06, and by the Computational Science Laboratory at Virginia Tech. The work of M. Günther has been supported in part by BMBF through grant 03MS648E.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Günther, M., Sandu, A. Multirate generalized additive Runge Kutta methods. Numer. Math. 133, 497–524 (2016). https://doi.org/10.1007/s00211-015-0756-z
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-015-0756-z