Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Low-temperature co-fired ceramic microchannels with individually addressable screen-printed gold electrodes on four walls for self-contained electrochemical immunoassays

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Microchannel devices were constructed from low-temperature co-fired ceramic (LTCC) materials with screen-printed gold (SPG) electrodes in three dimensions—on all four walls—for self-contained enzyme-linked immunosorbant assays with electrochemical detection. The microchannel confines the solution to a small volume, allowing concentration of electroactive enzymatically generated product and nearby electrodes provide high-speed and high-sensitivity detection: it also facilitates future integration with microfluidics. LTCC materials allow easy construction of three-dimensional structures compared with more traditional materials such as glass and polymer materials. Parallel processing of LTCC layers is more amenable to mass production and fast prototyping, compared with sequential processing for integrating multiple features into a single device. LTCC and SPG have not been reported previously as the basis for microchannel immunoassays, nor with integrated, individually addressable electrodes in three dimensions. A demonstration assay for mouse IgG at 5.0 ng/mL (3.3 × 10-11 M) with electrochemical detection was achieved within a 1.8 cm long × 290 μm high × 130 μm wide microchannel (approximately 680 nL). Two of four SPG electrodes span the top and bottom walls and serve as the auxiliary electrode and the assay site, respectively. The other two (0.7 cm long × 97 μm wide) are centered lengthwise on the sidewalls of the channel. One serves as the working and the other as the pseudoreference electrode. The immunoassay components were immobilized at the bottom SPG region. Enzymatically generated p-aminophenol was detected at the internal working electrode within 15 s of introducing the enzyme substrate p-aminophenyl phosphate. A series of buffer rinses avoided nonspecific adsorption and false-positive signals.

Microchannel constructed from low-temperature co-fired ceramic layers containing screen-printed gold electrodes and immunoassay site that converts p-aminophenylphosphate (PAPP) to p-aminophenol (PAPR) for subsequent electrochemical detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Henry CS, Zhong M, Lunte SM, Kim M, Bau HH, Santiago JJ (1999) Anal Commun 36:305–307

    Article  CAS  Google Scholar 

  2. Torsten V, Grundler P, Kirbs A, Flechsig G-U (1999) Electrochem Commun 1:383–388

    Article  Google Scholar 

  3. Gongora-Rubio M, Espinoza-Vallejos P, Sola-Laguna L, Santiago-Aviles (2001) Sens Actuators A Phys A 89:222–241

    Article  Google Scholar 

  4. Bau HH, Zhong J, Yi M (2001) Sens Actuators B 79:207–215

    Article  Google Scholar 

  5. Zhong J, Yi M, Bau HH (2002) Sens Actuators A 96:59–66

    Article  Google Scholar 

  6. Gosling JP (2000) Immunoassays. Oxford University Press, New York

    Google Scholar 

  7. Rossier JS, Girault HH (2001) Lab Chip 1:153

    Article  CAS  Google Scholar 

  8. Wang J, Ibáñez A, Chatrathi MP, Escarpa A (2001) Anal Chem 73:5323–5327

    Article  CAS  Google Scholar 

  9. Hadd AG, Raymond DE, Halliwell JW, Jacobson SC, Ramsey JM (1997) Anal Chem 69:3407–3412

    Article  CAS  Google Scholar 

  10. Choi J-W, Oh KW, Han A, Okulan N, Wajayawardhana A, Lannes C, Bhansali S, Schluter KT, Heineman WR, Halsall BH, Nevin JH, Helmicki AJ, Henderson TH, Ahn CH (2001) Biomed Microdevices 3:191–200

    Article  CAS  Google Scholar 

  11. Lim T-K, Ohta H, Matsunaga T (2003) Anal Chem 75:3316–3321

    Article  Google Scholar 

  12. Choi J-W, Oh KW, Thomas JH, Heineman WR, Halsall BH, Nevin JH, Helmick AJ, Henderson T, Ahn CH (2001) Lab Chip 2:27–30

    Article  Google Scholar 

  13. Rossier JS, Ferrigno R, Girault HH (2000) J Electroanal Chem 492:15–22

    Article  CAS  Google Scholar 

  14. Bange A, Halsall HB, Heineman WR (2005) Biosens Bioelectron 20:2488–2503

    Article  CAS  Google Scholar 

  15. Aguilar ZP, Vandaveer WR, Fritsch I (2002) Anal Chem 74:3321–3329

    Article  CAS  Google Scholar 

  16. Ko JS, Yoon HC, Yang H, Pyo H-B, Chung KH, Kim SJ, Kim YT (2003) Lab Chip 3:106

    Article  CAS  Google Scholar 

  17. Neff JA, Caldwell KD, Tresco PA (1998) J Biomed Mater Res 40:511–519

    Article  CAS  Google Scholar 

  18. Wink T, Zuilen SJV, Bult A, Bennekom WPV (1997) Analyst 122:43R–50R

    Article  CAS  Google Scholar 

  19. Susmel S, Guilbault GG, Sullivan CKO (2003) Biosens Bioelectron 18:881–889

    Article  CAS  Google Scholar 

  20. Carpini G, Lucarelli F, Marrazza G, Mascini M (2004) Biosens Bioelectron 20:167–175

    Article  CAS  Google Scholar 

  21. DuPont Microcircuit Materials (2002) Physical data for 5734: gold conductor for tape. Available via http://www.dupont.com/mcm/

  22. DuPont Microcircuit Materials (2006) Dupont 951 Green Tape system. Available via http://www.dupont.com/mcm/

  23. Fakunle ES, Aguliar ZP, Shultz JL, Toland AD, Fritsch I (2006) Langmuir 22:10844–10853

    Article  CAS  Google Scholar 

  24. Nunc (2006) Principles of adsorption to polystyrene, Denmark. http://www.nuncbrand.com/files/fr-579.pdf?828254

  25. Niwa YX, Halsall HB, Heineman W (1993) Anal Chem 65:1559–1563

    Article  CAS  Google Scholar 

  26. Heineman WR, Thomas JH, Wijayawardhana A, Halsall HB, Ridgway TH, Choi JW, Oh KW, Ahn C, Dharmatilleke S, Medis P, Henderson TH (2001) Anal Sci 17:i281–i284

    Article  Google Scholar 

  27. Terrill RH, Balss KM, Zhang Y, Bohn PW (2000) J Am Chem Soc 122:988–989

    Article  CAS  Google Scholar 

  28. Tender LM, Worley RL, Fan H, Lopez GP (1996) Langmuir 12:5515–5518

    Article  CAS  Google Scholar 

  29. Everett WR, Fritsch-Faules I (1995) Anal Chim Acta 307:253–268

    Article  CAS  Google Scholar 

  30. Bard AJ, Faulkner LR (2001) Electrochemical methods, fundamentals and applications. Wiley, New York

    Google Scholar 

  31. Fakunle ES (2006) Evaluation of low temperature co-fired ceramic (LTCC) and screen printed gold (SPG) as a platform for microelectrochemical bioassays. University of Arkansas, Dissertation

    Google Scholar 

  32. Nagale MP, Fritsch I (1998) Anal Chem 70:2908–2913

    Article  CAS  Google Scholar 

  33. Wehmeyer KR, Deakin MR, Wightman RM (1985) Anal Chem 57:1913–1916

    Article  CAS  Google Scholar 

  34. Bowyer WJ, Odell DM (1990) Anal Chem 62:1619–1623

    Article  Google Scholar 

  35. Henry CS, Fritsch I (1999) Anal Chem 71:550–556

    Article  CAS  Google Scholar 

  36. Xu Y, Halsall HB, Heineman WR (1989) J Pharm Biomed 7:1301–1311

    Article  CAS  Google Scholar 

  37. Tang HT, Lunte CE, Halsall HB, Heineman WR (1988) Anal Chim Acta 214:187

    Article  CAS  Google Scholar 

  38. Kreuzer MP, O'Sullivan CK, Guilbault GG (1999) Anal Chim Acta 393:95–102

    Article  CAS  Google Scholar 

  39. Deshpande SS (1996) Enzyme immunoassays from concept to product development. Chapman & Hall, New York

    Google Scholar 

  40. Sato K, Yamanaka M, Takahashi H, Tokeshi M, Kimura H, Kitamori T (2002) Electrophoresis 23:734–739

    Article  CAS  Google Scholar 

  41. Baeza M, López C, Alonso J, López-Santín J, Álvaro G (2010) Anal Chem 82:1006–1011

    Article  CAS  Google Scholar 

  42. Aoki K, Morita M, Niwa O, Tabei H (1988) J Electroanal Chem 256:269–282

    Article  CAS  Google Scholar 

  43. Licht S, Cammarata V, Wrighton MS (1989) Science 243:1176–1178

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge grants from the National Science Foundation (CHE-0096780) and Arkansas Biosciences Institute for financial support. We also express our gratitude to Gangqiang Wang and Jeffrey Mincy of the LTCC laboratory at the University of Arkansas for helpful discussions on fabrication of the devices, Mike Glover for microchannel design assistance, Zoraida P. Aguilar for helpful discussions about the assays, and Fred Barlow for use of the LTCC fabrication facility. E.S.F., who completed her Ph.D. degree in the Cellular and Molecular Biology (CEMB) graduate program, thanks CEMB for encouraging multidisciplinary research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Fritsch.

Additional information

Published in the special issue Focus on Bioanalysis with guest editors Antje J. Baeumner, Günter Gauglitz and Frieder W. Scheller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fakunle, E.S., Fritsch, I. Low-temperature co-fired ceramic microchannels with individually addressable screen-printed gold electrodes on four walls for self-contained electrochemical immunoassays. Anal Bioanal Chem 398, 2605–2615 (2010). https://doi.org/10.1007/s00216-010-4098-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4098-5

Keywords