Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Irregular Total Labellings of Generalized Petersen Graphs

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

The total edge irregularity strength tes(G) and total vertex irregularity strength tvs(G) are invariants analogous to irregular strength s(G) of a graph G for total labellings. Bača et al. (Discrete Math. 307:1378–1388, 2007) determined the bounds and precise values for some families of graphs concerning these parameters. In this paper, we show the exact values of the total edge irregularity strength and total vertex irregularity strength of generalized Petersen graphs P(n,k).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bac̆a, M., Jendrol, S., Miller, M., Ryan, J.: On irregular total labellings. Discrete Math. 307, 1378–1388 (2007)

    Article  MathSciNet  Google Scholar 

  2. Baril, J.L., Kheddouci, H., Togni, O.: The irregularity strength of circulant graphs. Discrete Math. 304, 1–10 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brandt, S., Mis̆skuf, J., Rautenbach, D.: On a conjecture about edge irregular total labelings. J. Graph Theory 57, 333–343 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bohman, T., Kravitz, D.: On the irregularity strength of trees. J. Graph Theory 45(4), 241–254 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ivanc̆o, J., Jendrol, S.: The total edge irregularity strength of trees. Discuss. Math., Graph Theory 26(3), 449–456 (2006)

    MathSciNet  Google Scholar 

  6. Jendrol, S., Tkác̆, M.: The irregularity strength of tKp. Discrete Math. 145, 301–305 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jendrol, S., Z̆oldák, V.: The irregularity strength of generalized Petersen graphs. Math. Slovaca, 45(2), 107–113 (1995)

    MathSciNet  MATH  Google Scholar 

  8. Jendrol, S., Mis̆kuf, J., Soták, R.: Total edge irregularity strength of complete graphs and complete bipartite graphs. Electron. Notes Discrete Math. 28, 281–285 (2007)

    Article  Google Scholar 

  9. Meissner, A., Niwińska, M.A., Zwierzynski, K.T.: Computing an irregularity strength of selected graphs. Electron. Notes Discrete Math. 24, 137–144 (2006)

    Article  Google Scholar 

  10. Togni, O.: Irregularity strength of the toroidal grid. Discrete Math. 165/166, 609–620 (1997)

    Article  MathSciNet  Google Scholar 

  11. Togni, O.: Irregularity strength and compound graphs. Discrete Math. 218, 235–243 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khandoker Mohammed Mominul Haque.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haque, K.M.M. Irregular Total Labellings of Generalized Petersen Graphs. Theory Comput Syst 50, 537–544 (2012). https://doi.org/10.1007/s00224-011-9350-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-011-9350-7

Keywords