Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

3D reconstruction of the crural and thoracolumbar fasciae

  • Original Article
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

Purpose

To create computerized three-dimensional models of the crural fascia and of the superficial layer of the thoracolumbar fascia.

Methods

Serial sections of these two fasciae, stained with Azan-Mallory, van Gieson and anti-S100 antibody stains, were recorded. The resulting images were merged (Image Zone 5.0 software) and aligned (MatLab Image Processing Toolkit). Color thresholding was applied to identify the structures of interest. 3D models were obtained with Tcl/Tk scripts and Paraview 3.2.1 software. From these models, the morphometric features of these fasciae were evaluated with ImageJ.

Results

In the crural fascia, collagen fibers represent less than 20% of the total volume, arranged in three distinct sub-layers (mean thickness, 115 μm), separated by a layer of loose connective tissue (mean thickness, 43 μm). Inside a single sub-layer, all the fibers are parallel, whereas the angle between the fibers of adjacent layers is about 78°. Elastic fibers are less than 1%. Nervous fibers are mostly concentrated in the middle layer. The superficial layer of the thoracolumbar fascia is also formed of three thinner sub-layers, but only the superficial one is similar to the crural fascia sub-layers, the intermediate one is similar to a flat tendon, and the deep one is formed of loose connective tissue. Only the superficial sub-layer has rich innervation and a few elastic fibers.

Discussion

Computerized three-dimensional models provide a detailed representation of the fascial structure, for better understanding of the interactions among the different components. This is a fundamental step in understanding the mechanical behavior of the fasciae and their role in pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 11:36–42

    Google Scholar 

  2. Avants B, Sundaram T, Duda JT, Jee JC, Ng L (2004) Non-rigid image registration. In: Yoo TS (ed) Insight into images. AK Peters Ltd., Wellesley

    Google Scholar 

  3. Azizi E, Roberts TJ (2009) Biaxial strain and variable stiffness in aponeuroses. J Physiol 587:4309–4318

    Article  PubMed  CAS  Google Scholar 

  4. Barker PJ, Briggs CA (1999) Attachments of the posterior layer of lumbar fascia. Spine 24:1757–1764

    Article  PubMed  CAS  Google Scholar 

  5. Benjamin M (2009) The fascia of the limbs and back—a review. J Anat 214:1–18

    Article  PubMed  Google Scholar 

  6. Bogduk N, Macintosh JE (1984) The applied anatomy of the thoracolumbar fascia. Spine 9:164–170

    Article  PubMed  CAS  Google Scholar 

  7. Cör A, Barbic M, Kralj B (2003) Differences in the quantity of elastic fibres and collagen type I and type III in endopelvic fascia between women with stress urinary incontinence and controls. Urol Res 31:61–65

    PubMed  Google Scholar 

  8. Fawcett DW (1994) Bloom and Fawcett: a textbook of histology, 12th edn. Chapman & Hall, London

    Google Scholar 

  9. Frey PJ (2000) About surface remeshing. In: 9th International Mesh Round Table, Sandia National Laboratories, pp 123–136

  10. Geneser F (1986) Textbook of histology. Munksgaard Lea & Febiger, Copenhagen

    Google Scholar 

  11. Gerlach UJ, Lierse W (1990) Functional construction of the superficial and deep fascia system of the lower limb in man. Acta Anat 139:11–25

    Article  PubMed  CAS  Google Scholar 

  12. Gracovetsky S, Farfan HF, Lamy C (1977) A mathematical model of the lumbar spine using an optimized system to control muscles and ligaments. Orthop Clin North Am 8:135–153

    PubMed  CAS  Google Scholar 

  13. Guidolin D, Crivellato E, Nico B, Andreis PG, Nussdorfer GG, Ribatti D (2006) An image analysis of the spatial distribution of perivascular mast cells in human melanoma. Int J Mol Med 17:981–987

    PubMed  Google Scholar 

  14. Guidolin D, Zunarelli E, Genedani S, Trentini GP, De Gaetani G, Fuxe K, Benegiamo C, Agnati LF (2008) Opposite patterns of age-associated changes in neurons and glial cells of the thalamus of human brain. Neurobiol Aging 29:926–936

    Article  PubMed  CAS  Google Scholar 

  15. Langevin HM, Stevens-Tuttle D, Fox JR, Badger GJ, Bouffard NA, Krag MH, Wu J, Henry SM (2009) Ultrasound evidence of altered lumbar connective tissue structure in human subjects with chronic low back pain. BMC Musculoskelet Disord 10:151

    Article  PubMed  Google Scholar 

  16. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. Comp Graphics 21:163–169

    Article  Google Scholar 

  17. Loukas M, Shoja MM, Thurston T, Jones VL, Linganna S, Tubbs RS (2008) Anatomy and biomechanics of the vertebral aponeurosis part of the posterior layer of the thoracolumbar fascia. Surg Radiol Anat 30:125–129

    Article  PubMed  Google Scholar 

  18. Maintz J, Viergever MA (1998) A survey of medical image registration. Med Image Anal 2:1–36

    Article  PubMed  CAS  Google Scholar 

  19. Mangin J, Poupon C, Clark C, Le Bihan D, Bloch I (2002) Distortion correction and robust tensor estimation for MR diffusion imaging. Med Image Anal 6:191–198

    Article  PubMed  Google Scholar 

  20. Martini FH, Timmons MJ, Tallitsch RB (2004) Anatomia umana, 2nd edn. EdiSES, Naples

    Google Scholar 

  21. McDonald S, Bearcroft P (2010) Compartment syndromes. Semin Musculoskelet Radiol 14:236–244

    Article  PubMed  Google Scholar 

  22. McGill SM, Norman RW (1988) Potential of lumbodorsal fascia forces to generate back extension moments during squat lifts. J Biomed Eng 10:312–318

    Article  PubMed  CAS  Google Scholar 

  23. Natali AN, Pavan PG, Stecco C (2010) A constitutive model for the mechanical characterization of the plantar fascia. Connect Tissue Res 22 (Epub ahead of print)

  24. Ng L, Ibanez L (2004) Medical image registration: concepts and implementation. In: Yoo TS (ed) Insight into images. AK Peters Ltd, Wellesley, pp 239–306

    Chapter  Google Scholar 

  25. Russ JC (1995) The image processing handbook. CRC Press, Boca Raton, p 272

    Google Scholar 

  26. Russ JC, Dehoff RT (2000) Practical stereology, 2nd edn. Plenum Press, New York

    Google Scholar 

  27. Standring S, Ellis H, Healy J, Johnson D, Williams A (2005) Gray’s anatomy, 39th edn. Churchill Livingstone, London

    Google Scholar 

  28. Stecco A, Macchi V, Masiero S, Porzionato A, Tiengo C, Stecco C, Delmas V, De Caro R (2009) Pectoral and femoral fasciae: common aspects and regional specializations. Surg Radiol Anat 31:35–42

    Article  PubMed  CAS  Google Scholar 

  29. Stecco C, Gagey O, Belloni A, Pozzuoli A, Porzionato A, Macchi V, Aldegheri R, De Caro R, Delmas V (2007) Anatomy of the deep fascia of the upper limb. Second part: study of innervation. Morphologie 91:38–43

    Article  PubMed  CAS  Google Scholar 

  30. Stecco C, Porzionato A, Lancerotto L, Stecco A, Macchi V, Day JA, De Caro R (2008) Histological study of the deep fasciae of the limbs. J Bodyw Mov Ther 12:225–230

    Article  PubMed  Google Scholar 

  31. Stecco C, Pavan PG, Porzionato A, Macchi V, Lancerotto L, Carniel EL, Natali AN, De Caro R (2009) Mechanics of crural fascia: from anatomy to constitutive modelling. Surg Radiol Anat 31:523–529

    Article  PubMed  Google Scholar 

  32. Stecco C, Macchi V, Lancerotto L, Tiengo C, Porzionato A, De Caro R (2010) Comparison of transverse carpal ligament and flexor retinaculum terminology for the wrist. J Hand Surg Am 35:746–753

    Article  PubMed  Google Scholar 

  33. Stecco C, Macchi V, Porzionato A, Morra A, Parenti A, Stecco A, Delmas V, De Caro R (2010) The ankle retinacula: morphological evidence of the proprioceptive role of the fascial system. Cells Tissues Organs 27 (Epub ahead of print)

  34. Stilwell D (1957) Regional variations in the innervation of deep fasciae and aponeuroses. Anat Rec 23:94–104

    Google Scholar 

  35. Vleeming A, Pool-Goudzwaard AL, Stoeckart R, van Wingerden JP, Snijders CJ (1995) The posterior layer of the thoracolumbar fascia. Its function in load transfer from spine to legs. Spine 20:753–758

    Article  PubMed  CAS  Google Scholar 

  36. Yahia H, Rhalmi S, Newman N (1992) Sensory innervation of human thoracolumbar fascia, an immunohistochemical study. Acta Orthop Scand 63:195–197

    Article  PubMed  CAS  Google Scholar 

  37. Young B (2006) Wheater’s functional histology: a text and colour atlas, 5th edn. Churchill Livingstone/Elsevier, Philadelphia

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. Natali and his collaborators for their skillful assistance.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Stecco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benetazzo, L., Bizzego, A., De Caro, R. et al. 3D reconstruction of the crural and thoracolumbar fasciae. Surg Radiol Anat 33, 855–862 (2011). https://doi.org/10.1007/s00276-010-0757-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-010-0757-7

Keywords