Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

In vivo high-resolution magnetic resonance elastography of the uterine corpus and cervix

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To apply 3D multifrequency MR elastography (3DMMRE) to the uterus and analyse the viscoelasticity of the uterine tissue in healthy volunteers considering individual variations and variations over the menstrual cycle.

Methods

Sixteen healthy volunteers participated in the study, one of whom was examined 12 times over two menstrual cycles. Pelvic 3DMMRE was performed on a 1.5-T scanner with seven vibration frequencies (30–60 Hz) using a piezoelectric driver. Two mechanical parameter maps were obtained corresponding to the magnitude (|G *|) and the phase angle (φ) of the complex shear modulus.

Results

On average, the uterine corpus had higher elasticity, but similar viscosity compared with the cervix, reflected by |G *|uterine corpus = 2.58 ± 0.52 kPa vs. |G *|cervix = 2.00 ± 0.34 kPa (p < 0.0001) and φ uterine corpus = 0.54 ± 0.08, φ cervix = 0.57 ± 0.12 (p = 0.428). With 2.23 ± 0.26 kPa, |G *| of the myometrium was lower in the secretory phase (SP) compared with that of the proliferative phase (PP, |G *| = 3.01 ± 0.26 kPa). For the endometrium, the value of |G *| in SP was 68 % lower than during PP (PP, |G *| = 3.34 ± 0.42 kPa; SP, |G *| = 1.97 ± 0.34 kPa; p = 0.0061).

Conclusion

3DMMRE produces high-resolution mechanical parameter maps of the uterus and cervix and shows sensitivity to structural and functional changes of the endometrium and myometrium during the menstrual cycle.

Key Points

MR elastography provided for the first time spatially resolved viscoelasticity maps of uterus.

Uterine corpus had a higher elasticity, but similar viscosity compared with cervix.

The stiffness of both endometrium and myometrium decreases during the menstrual cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Valentin L (2006) Imaging in gynecology. Best Pract Res Clin Obstet Gynaecol 20:881–906

    Article  PubMed  Google Scholar 

  2. Sala E (2008) Magnetic resonance imaging of the female pelvis. Semin Roentgenol 43:290–302

    Article  PubMed  Google Scholar 

  3. Muthupillai R, Ehman RL (1996) Magnetic resonance elastography. Nature Med 2:601–603

    Article  CAS  PubMed  Google Scholar 

  4. Glaser KJ, Manduca A, Ehman RL (2012) Review of MR elastography applications and recent developments. J Magn Reson Imaging 36:757–774

    Article  PubMed  Google Scholar 

  5. Vappou J (2012) Magnetic resonance- and ultrasound imaging-based elasticity imaging methods: a review. Crit Rev Biomed Eng 40:121–134

    Article  PubMed  Google Scholar 

  6. Stoelinga B, Hehenkamp WJ, Brolmann HA, Huirne JA (2013) The use of real-time elastography in the assessment of uterine disorders. Ultrasound Obstet Gynecol 43:218–226

    Article  Google Scholar 

  7. Tessarolo M, Bonino L, Camanni M, Deltetto F (2011) Elastosonography: a possible new tool for diagnosis of adenomyosis? Eur Radiol 21:1546–1552

    Article  PubMed  Google Scholar 

  8. Thomas A, Kummel S, Gemeinhardt O, Fischer T (2007) Real-time sonoelastography of the cervix: tissue elasticity of the normal and abnormal cervix. Acad Radiol 14:193–200

    Article  PubMed  Google Scholar 

  9. Stewart EA, Taran FA, Chen J et al (2011) Magnetic resonance elastography of uterine leiomyomas: a feasibility study. Fertil Steril 95:281–284

    Article  PubMed Central  PubMed  Google Scholar 

  10. Garteiser P, Sahebjavaher RS, Ter Beek LC et al (2013) Rapid acquisition of multifrequency, multislice and multidirectional MR elastography data with a fractionally encoded gradient echo sequence. NMR Biomed 26:1326–1335

    Article  PubMed  Google Scholar 

  11. Hirsch S, Guo J, Reiter R et al (2014) MR Elastography of the liver and the spleen using a piezoelectric driver, single-shot wave-field acquisition, and multifrequency dual parameter reconstruction. Magn Reson Med 71:267–277

    Article  PubMed  Google Scholar 

  12. Johnson CL, McGarry MD, Van Houten EE et al (2012) Magnetic resonance elastography of the brain using multishot spiral readouts with self-navigated motion correction. Magn Reson Med. doi:10.1002/mrm.24473

    Google Scholar 

  13. Hirsch S, Posnansky O, Papazoglou S, Elgeti T, Braun J, Sack I (2012) Measurement of vibration-induced volumetric strain in the human lung. Magn Reson Med 69:667–674

    Article  PubMed  Google Scholar 

  14. Guo J, Hirsch S, Streitberger KJ et al (2013) Patient-activated three-dimensional multifrequency magnetic resonance elastography for high-resolution mechanical imaging of the liver and spleen. Röfo 186:260–266

    PubMed  Google Scholar 

  15. Guo J, Hirsch S, Fehlner A et al (2013) Towards an elastographic atlas of brain anatomy. Plos One 8:e71807

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Rump J, Klatt D, Braun J, Warmuth C, Sack I (2007) Fractional encoding of harmonic motions in MR elastography. Magn Reson Med 57:388–395

    Article  PubMed  Google Scholar 

  17. Elgeti T, Laule M, Kaufels N et al (2009) Cardiac MR elastography: comparison with left ventricular pressure measurement. J Cardiovasc Magn Reson 11:44

    Article  PubMed Central  PubMed  Google Scholar 

  18. Wuerfel J, Paul F, Beierbach B et al (2010) MR-elastography reveals degradation of tissue integrity in multiple sclerosis. Neuroimage 49:2520–2525

    Article  PubMed  Google Scholar 

  19. Hirsch S, Klatt D, Freimann F, Scheel M, Braun J, Sack I (2012) In vivo measurement of volumetric strain in the human brain induced by arterial pulsation and harmonic waves. Magn Reson Med. doi:10.1002/mrm.24499

    Google Scholar 

  20. Aster RC, Borchers B, Thurber CH (2013) Parameter estimation and inverse problems. Elsevier, Amsterdam

    Google Scholar 

  21. Braun J, Guo J, Lützkendorf R et al (2013) High-resolution mechanical imaging of the human brain by three-dimensional multifrequency magnetic resonance elastography at 7 T. Neuroimage 90:308–314

    Article  PubMed  Google Scholar 

  22. Murphy MC, Curran GL, Glaser KJ et al (2012) Magnetic resonance elastography of the brain in a mouse model of Alzheimer’s disease: initial results. Magn Reson Imaging 30:535–539

    Article  PubMed Central  PubMed  Google Scholar 

  23. McGarry MDJ, Van Houten EEW, Perrinez PR, Pattison AJ, Weaver JB, Paulsen KD (2011) An octahedral shear strain-based measure of SNR for 3D MR elastography. Phys Med Biol 56:N153–N164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Vogel H (1986) Maße in der Sonographie und Computertomographie. Landsberg/Lech, Ecomed Verlagsgesellschaft mbH, pp 345–347

  25. Kiss MZ, Hobson MA, Varghese T et al (2006) Frequency-dependent complex modulus of the uterus: preliminary results. Phys Med Biol 51:3683–3695

    Article  PubMed Central  PubMed  Google Scholar 

  26. Chan RW, Schwab KE, Gargett CE (2004) Clonogenicity of human endometrial epithelial and stromal cells. Biol Reprod 70:1738–1750

    Article  CAS  PubMed  Google Scholar 

  27. Uduwela AS, Perera MA, Aiqing L, Fraser IS (2000) Endometrial-myometrial interface: relationship to adenomyosis and changes in pregnancy. Obstet Gynecol Surv 55:390–400

    Article  CAS  PubMed  Google Scholar 

  28. Hoad CL, Raine-Fenning NJ, Fulford J, Campbell BK, Johnson IR, Gowland PA (2005) Uterine tissue development in healthy women during the normal menstrual cycle and investigations with magnetic resonance imaging. Am J Obstet Gynecol 192:648–654

    Article  PubMed  Google Scholar 

  29. Raine-Fenning NJ, Campbell BK, Clewes JS, Kendall NR, Johnson IR (2004) Defining endometrial growth during the menstrual cycle with three-dimensional ultrasound. BJOG 111:944–949

    Article  PubMed  Google Scholar 

  30. Noe M, Kunz G, Herbertz M, Mall G, Leyendecker G (1999) The cyclic pattern of the immunocytochemical expression of oestrogen and progesterone receptors in human myometrial and endometrial layers: characterization of the endometrial-subendometrial unit. Hum Reprod 14:190–197

    Article  CAS  PubMed  Google Scholar 

  31. Brown HK, Stoll BS, Nicosia SV et al (1991) Uterine junctional zone: correlation between histologic findings and MR imaging. Radiology 179:409–413

    Article  CAS  PubMed  Google Scholar 

  32. Fusi L, Cloke B, Brosens JJ (2006) The uterine junctional zone. Best Pract Res Clin Obstet Gynaecol 20:479–491

    Article  PubMed  Google Scholar 

  33. Novellas S, Chassang M, Delotte J et al (2011) MRI characteristics of the uterine junctional zone: from normal to the diagnosis of adenomyosis. AJR Am J Roentgenol 196:1206–1213

    Article  PubMed  Google Scholar 

  34. Sack I, Johrens K, Wurfel J, Braun J (2013) Structure-sensitive elastography: on the viscoelastic powerlaw behavior of in vivo human tissue in health and disease. Soft Matter 9:5672–5680

    Article  CAS  Google Scholar 

  35. Myers KM, Paskaleva AP, House M, Socrate S (2008) Mechanical and biochemical properties of human cervical tissue. Acta Biomater 4:104–116

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The scientific guarantor of this publication is Dr.Ingolf Sack. The authors of this manuscript declare relationships with the following companies: B.H. Financial activities related to the present article: Department of Radiology received grants from Abbott, Actelion Pharmaceuticals, Bayer Schering Pharma, Bayer Vital, Bracco Group, Bristol-Myers Squibb, Charité Research Organisation, Deutsche Krebshilfe, Dt. Stiftung für Herzforschung, Essex Pharma, EU Programmes, Fibrex Medical, Focused Ultrasound Surgery Foundation, Fraunhofer Gesellschaft, Guerbet, INC Research, InSightec Ltd, Ipsen Pharma, Kendle/MorphoSys, Lilly, Lundbeck, MeVis Medical Solutions, Nexus Oncology, Novartis, Parexel CRO Service, Perceptive, Pfizer, Philips, Sanofi Aventis, Siemens, Spectranetics, Terumo Medical, TNS Healthcare, Toshiba, UCB Pharma, Wyeth Pharma, and Zukunftsfond Berlin (TSB). Financial activities not related to the present article: Department of Radiology received grants from Abbott, Actelion Pharmaceuticals, Bayer Schering Pharma, Bayer Vital, Bracco Group, Bristol-Myers Squibb, Charité Research Organisation, Deutsche Krebshilfe, Dt. Stiftung für Herzforschung, Essex Pharma, EU Programmes, Fibrex Medical, Focused Ultrasound Surgery Foundation, Fraunhofer Gesellschaft, Guerbet, INC Research, InSightec, Ipsen Pharma, Kendle/MorphoSys, Lilly, Lundbeck, MeVis Medical Solutions, Nexus Oncology, Novartis, Parexel CRO Service, Perceptive, Pfizer, Philips, Sanofi Aventis, Siemens, Spectranetics, Terumo Medical, TNS Healthcare, Toshiba, UCB Pharma, Wyeth Pharma, Zukunftsfond Berlin (TSB). Other relationships: board memberships (Deutsche Röntgengesellschaft, European Congress of Radiology, European Society of Radiology, ESMRMB, European School of Radiology, Deutsche Forschungsgemeinschaft, support for travel); consultancy (Bayer Schering Pharma, Toshiba; honorarium); Abbott, Actelion Pharmaceuticals, Bayer Schering Pharma, Bayer Vital, Bracco Group, Bristol-Myers Squibb, Charité Research Organisation, Deutsche Krebshilfe, Dt. Stiftung für Herzforschung, Essex Pharma, EU Programmes, Fibrex Medical, Focused Ultrasound Surgery Foundation, Fraunhofer Gesellschaft, Guerbet, INC Research, InSightec, Ipsen Pharma, Kendle/MorphoSys, Lilly, Lundbeck, MeVis Medical Solutions, Nexus Oncology, Novartis, Parexel CRO Service, Perceptive, Pfizer, Philips, Sanofi Aventis, Siemens, Spectranetics, Terumo Medical, TNS Healthcare, Toshiba, UCB Pharma, Wyeth Pharma, Zukunftsfond Berlin (TSB), Amgen, AO Foundation, Bard, BBraun (Sponsoring eines Workshops), Boehring Ingelheimer, Bransgate, PPD (CRO), CELLACT Pharma, Celgene, CeloNova BioSciences, Covance, DC Devices Inc USA, Ganymed, Gilead Sciences, Glaxo Smith Kline, ICON (CRO), Jansen, LUX Biosciences, MedPass (CRO), Merck, Mologen, Nuvisan, Pluristem, Quintiles (CRO), Roche, Schumacher (sponsoring workshops), Seattle Genetics, Symphogen and TauRx Therapeutics. For the remaining authors none were declared. The authors state that this work has not received any funding. No complex statistical methods were necessary for this paper. Institutional review board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. No study subjects or cohorts have been previously reported. Methodology: prospective, experimental, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Asbach, P., Streitberger, KJ. et al. In vivo high-resolution magnetic resonance elastography of the uterine corpus and cervix. Eur Radiol 24, 3025–3033 (2014). https://doi.org/10.1007/s00330-014-3305-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-014-3305-8

Keywords