Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A new fusion of salp swarm with sine cosine for optimization of non-linear functions

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

The foremost objective of this article is to develop a novel hybrid powerful meta-heuristic that integrates the salp swarm algorithm with sine cosine algorithm (called HSSASCA) for improving the convergence performance with the exploration and exploitation being superior to other comparative standard algorithms. In this method, the position of salp swarm in the search space is updated using the position equations of sine cosine; hence the best and possible optimal solutions are obtained based on the sine or cosine function. During this process, each salp adopts the information sharing strategy of sine and cosine functions to improve their exploration and exploitation ability. The inspiration behind incorporating changes in salp swarm optimizer algorithm is to assist the basic approach to avoid premature convergence and to rapidly guide the search towards the probable search space. The algorithm is validated on 22 standard mathematical optimization functions and 3 applications namely the 3-bar truss, tension/compression spring and cantilever beam design problems. The aim is to examine and confirm the valuable behaviors of HSSASCA in searching the best solutions for optimization functions. The experimental results reveal that HSSASCA algorithm achieves the highest accuracies with least runtime in comparison with the others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abdel-Basset M, Gunasekaran M, El-Shahat D, Mirjalili S (2018) A hybrid whale optimization algorithm based on local search strategy for the permutation flow shop scheduling problem. Futur Gener Comput Syst 85:129–145

    Google Scholar 

  2. Abido MA (2002) Optimal power flow using tabu search algorithm. Electric Power Compon Syst 30:469–483

    Google Scholar 

  3. Abtahi AR, Bijari A (2017) A novel hybrid meta-heuristic technique applied to the well-known benchmark optimization problems. J Ind Eng Int 13(1):93–105

    Google Scholar 

  4. Akay B, Karaboga D (2012) Artificial bee colony algorithm for large-scale problems and engineering design optimization. J Intell Manuf 23(4):1001–1014

    Google Scholar 

  5. Ali M, Son LH, Thanh ND, Van Minh N (2017) A neutrosophic recommender system for medical diagnosis based on algebraic neutrosophic measures. Appl Soft Comput. https://doi.org/10.1016/j.asoc.2017.10.012

    Article  Google Scholar 

  6. Ali M, Son LH, Khan M, Tung NT (2018) Segmentation of dental X-ray images in medical imaging using neutrosophic orthogonal matrices. Expert Syst Appl 91:434–441

    Google Scholar 

  7. Amal L, Son LH, Chabchoub H (2018) SGA: spatial GIS-based genetic algorithm for route optimization of municipal solid waste collection. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-018-2826-0

    Article  Google Scholar 

  8. Awais M, Javaid N, Mateen A, Khan N, Mohiuddin A, Rehman MHA (2018) In the proceeding of 32nd international conference on advanced information networking and applications, IEEE, pp 882–891

  9. Azad M, Bozorg-Haddad O, Chu X (2018) Flower pollination algorithm (FPA). In: Advanced optimization by nature-inspired algorithms. Springer, Singapore, pp 59–67

    Google Scholar 

  10. Bakirtzis AG, Biskas P, Zoumas CE, Petridis V (2002) Optimal power flow by enhanced genetic algorithm. Power Syst IEEE Trans 17(2):229–236

    Google Scholar 

  11. Barraza J, Rodriguez L, Castillo O, Melin P, Valdez F. A new hybridization approach between the fireworks algorithm and grey wolf optimizer algorithm. J Optim 2018:1–18 (Article id: 6495362)

    MathSciNet  MATH  Google Scholar 

  12. Baykasoğlu A, Ozsoydan FB (2015) Adaptive firefly algorithm with chaos for mechanical design optimization problems. Appl Soft Comput l(36):152–164

    Google Scholar 

  13. Ben-Tal A, El haoui L, Nemirovski A (2009) Robust optimization. Princeton series in applied mathematics. Princeton University Press, Princeton, pp 9–16

    Google Scholar 

  14. Bouchekara HREH (2014) Optimal power flow using black-hole-based optimization approach. Appl Soft Comput 24:879–888

    Google Scholar 

  15. Cheng MY, Prayogo D (2014) Symbiotic organisms search: a new meta-heuristic optimization algorithm. Comput Struct 139:98–112

    Google Scholar 

  16. Chickermane H, Gea HC (1996) Structural optimization using a new local approximation method. Int J Numer Meth Eng 39(5):829–846

    MathSciNet  MATH  Google Scholar 

  17. Chowdhury BH (1992) Towards the concept of integrated security: optimal dispatch under static and dynamic security constraints. Electric Power Syst Res 25:213–225

    Google Scholar 

  18. Chuan PM, Son LH, Ali M, Khang TD, Dey N (2018) Link prediction in co-authorship networks based on hybrid content similarity metric. Appl Intell 48(8):2470–2486

    Google Scholar 

  19. Chung TS, Li YZ (2001) A hybrid GA approaches for OPF with consideration of FACTS devices. IEEE Power Eng Rev 20:47–50

    Google Scholar 

  20. Daryani N, Hagh MT, Teimourzadeh S (2016) Adaptive group search optimization algorithm for multi-objective optimal power flow problem. Appl Soft Comput 38:1012–1024

    Google Scholar 

  21. Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18

    Google Scholar 

  22. Duman S, Güvenç U, Sönmez Y, Yörükeren N (2012) Optimal power flow using gravitational search algorithm. Energy Convers Manag 59:86–95

    Google Scholar 

  23. Faris H, Mafarja MM, Heidari AA, Aljarah I, Ala’M AZ, Mirjalili S, Fujita H (2018) An efficient binary salp swarm algorithm with crossover scheme for feature selection problems. Knowl Based Syst 154:43–67

    Google Scholar 

  24. Farnad B, Jafarian A (2018) A new nature-inspired hybrid algorithm with a penalty method to solve constrained problem. Int J Comput Methods 15(08):1850069

    MathSciNet  MATH  Google Scholar 

  25. Fouad A (2017) A hybrid Grey Wolf Optimizer and genetic algorithm for minimizing potential energy function. Memet Comput 9(9):1–13

    Google Scholar 

  26. Gandomi AH, Yang XS, Alavi AH, Talatahari H (2013) Bat algorithm for constrained optimization tasks. Neural Comput Appl 22(6):1239–1255

    Google Scholar 

  27. Gandomi AH, Yang XS, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29(1):17–35

    Google Scholar 

  28. Giap CN, Son LH, Chiclana F (2018) Dynamic structural neural network. J Intell Fuzzy Syst 34:2479–2490

    Google Scholar 

  29. Hemanth DJ, Anitha J, Son LH (2018) Brain signal based human emotion analysis by circular back propagation and Deep Kohonen Neural Networks. Comput Electr Eng 68:170–180

    Google Scholar 

  30. Hemanth DJ, Anitha J, Popescu DE, Son LH (2018) A modified genetic algorithm for performance improvement of transform based image steganography systems. J Intell Fuzzy Syst 35(1):197–209

    Google Scholar 

  31. Hsun LR, Ren TS, Tone CY Tseng W-T (2011) Optimal power flow by a fuzzy based hybrid particle swarm optimization approach. Electr Power Syst Res 81(7):1466–1474

    Google Scholar 

  32. Hu C, Xia Y, Zhang J (2018) Adaptive operator quantum-behaved pigeon-inspired optimization algorithm with application to UAV path planning. Algorithms MDPI 12(1):1–16

    MathSciNet  MATH  Google Scholar 

  33. Kalaiselvi K, Kumar V, Chandrasekar K (2010) Enhanced genetic algorithm for optimal electric power flow using TCSC and TCPS. In: Proceedings of the world (II)

  34. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, pp 1942–1948

  35. Le T, Son LH, Vo MT, Lee MY, Baik SW (2018) A cluster-based boosting algorithm for bankruptcy prediction in a highly imbalanced dataset. Symmetry 10(7):250 (20738994)

    Google Scholar 

  36. Liu H, Cai Z, Wang Y (2010) Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Appl Soft Comput 10(2):629–640

    Google Scholar 

  37. Liu H, Hua G, Yin H, Xu Y (2018) An intelligent grey wolf optimizer algorithm for distributed compressed sensing. Comput Intell Neurosci 1–10 (Article id: 1723191)

    Google Scholar 

  38. Louati A, Son LH, Chabchoub H (2018) Smart routing for municipal solid waste collection: a heuristic approach. J Ambient Intell Human Comput. https://doi.org/10.1007/s12652-018-0778-3

    Article  Google Scholar 

  39. Lu Y, Zhou Y, Wu X (2017) A hybrid lightning search algorithm-simplex method for global optimization. Discret Dyn Nat Soc 2017(2017):1–23 (id: 8342694)

    MathSciNet  MATH  Google Scholar 

  40. Mahdavi M, Fesanghary M, Damangir E (2007) An improved harmony search algorithm for solving optimization problems. Appl Math Comput 188(2):1567–1579

    MathSciNet  MATH  Google Scholar 

  41. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst Elsevier 89:228–249

    Google Scholar 

  42. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw Elsevier 83:80–98

    Google Scholar 

  43. Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 4:1053–1073

    Google Scholar 

  44. Mirjalili S (2016) Grasshopper optimization algorithm: theory and application. Adv Eng Softw 105:30–47

    Google Scholar 

  45. Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl Based Syst Elsevier 96:120–133

    Google Scholar 

  46. Mirjalili S (2016) The whale optimization algorithm. Adv Eng Softw 9:51–67

    Google Scholar 

  47. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimization. Adv Eng Softw 69:46–61

    Google Scholar 

  48. Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 2:495–513

    Google Scholar 

  49. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Google Scholar 

  50. Mukherjee A, Mukherjee V (2015) Solution of optimal power flow using chaotic krill herd algorithm. Chaos Solutions Fractals 78:10–21

    MathSciNet  Google Scholar 

  51. Ngan RT, Son LH, Cuong BC, Ali M (2018) H-max distance measure of intuitionistic fuzzy sets in decision making. Appl Soft Comput 69:393–425

    Google Scholar 

  52. Pandiri V, Singh A (2018) A swarm intelligence approach for the colored traveling salesman problem. Appl Intell. https://doi.org/10.1007/s10489-018-1216-0

    Article  Google Scholar 

  53. Pham BT, Son LH, Hoang TA, Nguyen DM, Bui DT (2018) Prediction of shear strength of soft soil using machine learning methods. Catena 166:181–191

    Google Scholar 

  54. Rao MR, Babu NVN (2013) Optimal power flow using cuckoo optimization algorithm. Ijareeie 2:4213–4218

    Google Scholar 

  55. Ray T, Liew KM (2003) Society and civilization: an optimization algorithm based on the simulation of social behavior. IEEE Trans Evol Comput 7(4):386–396

    Google Scholar 

  56. Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2013) Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput 13(5):2592–2612

    Google Scholar 

  57. Sarbazfard S, Jafarian A (2016) A hybrid algorithm based on firefly algorithm and differential evolution for global optimization. Int J Adv Comput Sci Appl 7(6):95–106

    Google Scholar 

  58. Sayed GI, Khoriba G, Haggag MH (2018) A novel chaotic salp swarm algorithm for global optimization and feature selection. Appl Intell 6:1–20

    Google Scholar 

  59. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713

    Google Scholar 

  60. Singh N (2018) A modified variant of grey wolf optimizer. International Journal of Science & Technology, Scientia Iranica. http://scientiairanica.sharif.edu/?_action=article&keywords=A+Modified+Variant+of+Grey+Wolf+Optimizer(in press)

  61. Singh N, Hachimi H (2018) A new hybrid whale optimizer algorithm with mean strategy of grey wolf optimizer for global optimization. Math Comput Appl 23(14):1–32

    MathSciNet  MATH  Google Scholar 

  62. Singh N, Singh SB (2011) One half global best position particle swarm optimization algorithm. Int J Sci Eng Res 2(8):1–10

    Google Scholar 

  63. Singh N, Singh SB (2012) Personal best position particle swarm optimization. J Appl Comput Sci Math 12(6):69–76

    Google Scholar 

  64. Singh N, Singh SB (2017) A modified mean grey wolf optimization approach for benchmark and biomedical problems. Evol Bioinform 13:1–28

    Google Scholar 

  65. Singh N, Singh SB (2017) Hybrid algorithm of particle swarm optimization and grey wolf optimizer for improving convergence performance. J Appl Math :1–15 (ID 2030489)

    MathSciNet  Google Scholar 

  66. Singh N, Singh SB (2017) A novel hybrid GWO-SCA approach for optimization problem. Eng Sci Technol Int J 20:1586–1601

    Google Scholar 

  67. Singh N, Singh S, Singh SB (2012) Half mean particle swarm optimization algorithm. Int J Sci Eng Res 3(8):1–9

    Google Scholar 

  68. Singh N, Singh S, Singh SB (2017) A new hybrid MGBPSO-GSA variant for improving function optimization solution in search space. Evol Bioinform 13:1–13

    Google Scholar 

  69. Singh K, Singh K, Son LH, Aziz A (2018) Congestion control in wireless sensor networks by hybrid multi-objective optimization algorithm. Comput Netw 138:90–107

    Google Scholar 

  70. Sinsupan N, Leeton U, Kulworawanichpong T (2010) Application of harmony search to optimal Power Flow Problems. In: Advances in Energy Engineering (ICAEE), 2010 International Conference on, IEEE, pp 219–222

  71. Soares J, Sousa T. Vale ZA, Morais H, Faria P (2011) Ant colony search algorithm for the optimal power flow problem. In: Power and Energy Society General Meeting, 2011 IEEE, IEEE pp 1–8

  72. Son LH, Fujita H (2018) Neural-fuzzy with representative sets for prediction of student performance. Appl Intell 2018:1–8

    Google Scholar 

  73. Son LH, Chiclana F, Kumar R, Mittal M, Khari M, Chatterjee JM, Baik SW (2018) ARM–AMO: an efficient association rule mining algorithm based on animal migration optimization. Knowl Based Syst 154:68–80

    Google Scholar 

  74. Talbi EG (2002) A taxonomy of hybrid metaheuristics. J Heuristics 8(5):541–564

    Google Scholar 

  75. Tawhid MA, Savsani V (2017) Multi-objective sine-cosine algorithm (MO-SCA) for multi-objective engineering design problems. Neural Comput Appl 1–15

  76. Vidal T, Crainic TG, Gendreau M, Prins C (2013) A hybrid genetic algorithm with adaptive diversity management for a large class of vehicle routing problems with time-window. Comput Oper Res Elsevier 40(1):475–489

    MathSciNet  MATH  Google Scholar 

  77. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Google Scholar 

  78. Yang XS (2014) Nature-inspired optimization algorithms. Book Elsevier Science Publishers B.V, Amsterdam. https://dl.acm.org/citation.cfm?id=2655295. Accessed 26 July 2016

  79. Yang Y, Yang B, Niu M (2017) Adaptive infinite impulse response system identification using opposition based hybrid coral reefs optimization algorithm. Appl Intell. https://doi.org/10.1007/s10489-017-1034-9

    Article  Google Scholar 

  80. Yuan X, Dai X, Zhao J, He Q (2014) On a novel multi-swarm fruit fly optimization algorithm and its application. Appl Math Comput 233(3):260–271

    MathSciNet  MATH  Google Scholar 

  81. Zamli KZ, Din F, Ahmed SB, Bures M (2018) A hybrid Q-learning sine-cosine-based strategy for addressing the combinatorial test suite minimization problem. PLoS One 13(5):e0195675

    Google Scholar 

  82. Zhang M, Luo W, Wang X (2008) Differential evolution with dynamic stochastic selection for constrained optimization. Inf Sci 178(15):3043–3074

    Google Scholar 

  83. Zhao X, Hwang JN, Fang Z, Wang G (2018) Gradient-based adaptive particle swarm optimizer with improved extremal optimization. Appl Intell. https://doi.org/10.1007/s10489-018-1228-9

    Article  Google Scholar 

  84. Zheng YJ (2015) Water wave optimization: a new nature-inspired metaheuristic. Comput Oper Res Elsevier 55(1):1–11

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the referees for their valuable suggestions, which helped to improve the quality of the paper significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Hoang Son.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables (14, 15, 16).

Table 14 Uni-modal functions
Table 15 Multi-modal functions
Table 16 Fixed-dimension multi-modal benchmark functions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, N., Son, L.H., Chiclana, F. et al. A new fusion of salp swarm with sine cosine for optimization of non-linear functions. Engineering with Computers 36, 185–212 (2020). https://doi.org/10.1007/s00366-018-00696-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-018-00696-8

Keywords