Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Recent advances in shape correspondence

  • Survey
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Important new developments have appeared since the most recent direct survey on shape correspondence published almost a decade ago. Our survey covers the period from 2011, their stopping point, to 2019, inclusive. The goal is to present the recent updates on correspondence computation between surfaces or point clouds embedded in 3D. Two tables summarizing and classifying the prominent, to our knowledge, papers of this period, and a large section devoted to their discussion lay down the foundation of our survey. The discussion is carried out in chronological order to reveal the distribution of various types of correspondence methods per year. We also explain our classification criteria along with the most basic solution examples. We finish with conclusions and future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

a and b are taken from [90] and [103], respectively

Fig. 8

a, c, d, and b are taken from [5] and [2], respectively

Fig. 9

a and b are taken from [97] and [32], respectively

Fig. 10

a and b are taken from [115] and [14], respectively

Fig. 11

a and b are taken from [81] and [82], respectively

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Aflalo, Y., Dubrovina, A., Kimmel, R.: Spectral generalized multi-dimensional scaling. Int. J. Comput. Vis. 118(3), 380–392 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Aigerman, N., Kovalsky, S., Lipman, Y.: Spherical orbifold Tutte embeddings. ACM Trans. Graph. (Proc. SIGGRAPH) 36(4), 90 (2017)

    Google Scholar 

  3. Aigerman, N., Lipman, Y.: Orbifold Tutte embeddings. ACM Trans. Graph. 34(6), 190–1 (2015)

    Google Scholar 

  4. Aigerman, N., Lipman, Y.: Hyperbolic orbifold Tutte embeddings. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 35(6), 217 (2016)

    Google Scholar 

  5. Aigerman, N., Poranne, R., Lipman, Y.: Lifted bijections for low distortion surface mappings. ACM Trans. Graph. 33(4), 69 (2014)

    MATH  Google Scholar 

  6. Aigerman, N., Poranne, R., Lipman, Y.: Seamless surface mappings. ACM Trans. Graph. 34(4), 72 (2015)

    MATH  Google Scholar 

  7. Alhashim, I., Li, H., Xu, K., Cao, J., Ma, R., Zhang, H.: Topology-varying 3D shape creation via structural blending. ACM Trans. Graph. (TOG) 33(4), 158 (2014)

    Google Scholar 

  8. Alhashim, I., Xu, K., Zhuang, Y., Cao, J., Simari, P., Zhang, H.: Deformation-driven topology-varying 3D shape correspondence. ACM Trans. Graph. (TOG) 34(6), 236 (2015)

    Google Scholar 

  9. Azencot, O., Dubrovina, A., Guibas, L.: Consistent shape matching via coupled optimization. Comput. Graph. Forum 38(5), 13–25 (2019)

    Google Scholar 

  10. Azencot, O., Vantzos, O., Ben-Chen, M.: Advection-based function matching on surfaces. Comput. Graph. Forum 35(5), 55–64 (2016)

    Google Scholar 

  11. Biasotti, S., Cerri, A., Bronstein, A., Bronstein, M.: Recent trends, applications, and perspectives in 3D shape similarity assessment. Comput. Graph. Forum 35(6), 87–119 (2016)

    Google Scholar 

  12. Biasotti, S., Cerri, A., Bronstein, A.M., Bronstein, M.M.: Quantifying 3D shape similarity using maps: recent trends, applications and perspectives. Eurographics (State of the Art Reports), pp. 135–159 (2014)

  13. Boscaini, D., Masci, J., Rodolà, E., Bronstein, M.: Learning shape correspondence with anisotropic convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 3189–3197 (2016)

  14. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond euclidean data. IEEE Signal Process. Mag. 34(4), 18–42 (2017)

    Google Scholar 

  15. Brunton, A., Wand, M., Wuhrer, S., Seidel, H.-P., Weinkauf, T.: A low-dimensional representation for robust partial isometric correspondences computation. Graph. Models 76(2), 70–85 (2014)

    Google Scholar 

  16. Carrière, M., Oudot, S.Y., Ovsjanikov, M.: Stable topological signatures for points on 3D shapes. Comput. Graph. Forum 34(5), 1–12 (2015)

    Google Scholar 

  17. Chen, Q., Koltun, V.: Robust nonrigid registration by convex optimization. In: Proceedings of International Conference on Computer Vision, pp. 2039–2047 (2015)

  18. Corman, E., Ovsjanikov, M., Chambolle, A.: Supervised descriptor learning for non-rigid shape matching. In: European Conference on Computer Vision, pp. 283–298 (2014)

  19. Corman, E., Ovsjanikov, M., Chambolle, A.: Continuous matching via vector field flow. Comput. Graph. Forum 34(5), 129–139 (2015)

    Google Scholar 

  20. Cosmo, L., Panine, M., Rampini, A., Ovsjanikov, M., Bronstein, M.M., Rodolà, E.: Isospectralization, or how to hear shape, style, and correspondence. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7529–7538 (2019)

  21. Cosmo, L., Rodolà, E., Albarelli, A., Mémoli, F., Cremers, D.: Consistent partial matching of shape collections via sparse modeling. Comput. Graph. Forum 36(1), 209–221 (2017)

    Google Scholar 

  22. Denitto, M., Melzi, S., Bicego, M., Castellani, U., Farinelli, A., Figueiredo, M.A., Kleiman, Y., Ovsjanikov, M.: Region-based correspondence between 3d shapes via spatially smooth biclustering. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4260–4269 (2017)

  23. Dubrovina, A., Kimmel, R.: Approximately isometric shape correspondence by matching pointwise spectral features and global geodesic structures. Adv. Adapt. Data Anal. (AADA) 3, 203–228 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Dyke, R., Lai, Y.-K., Rosin, P., Tam, G.K.: Non-rigid registration under anisotropic deformations. Comput. Aided Geom. Des. 71, 142–156 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Dyke, R., Stride, C., Lai, Y., Rosin, P., Aubry, M., Boyarski, A., Bronstein, A., Bronstein, M., Cremers, D., Fisher, M., Groueix, T., Guo, D., Kim, V., Kimmel, R., Lahner, Z., Li, K., Litany, O., Remez, T., Rodolà, E., Russel, B., Sahillioğlu, Y., Slossberg, R., Tam, G., Vestner, M., Wu, Z., Yang, J.: Shape correspondence with isometric and non-isometric deformations. In: Eurographics Workshop on 3D Object Retrieval (2019)

  26. Eisenberger, M., Lahner, Z., Cremers, D.: Divergence-free shape correspondence by deformation. Comput. Graph. Forum 38(5), 1–12 (2019)

    Google Scholar 

  27. Ezuz, D., Ben-Chen, M.: Deblurring and denoising of maps between shapes. Comput. Graph. Forum 36(5), 165–174 (2017)

    Google Scholar 

  28. Ezuz, D., Heeren, B., Azencot, O., Rumpf, M., Ben-Chen, M.: Elastic correspondence between triangle meshes. Comput. Graph. Forum 38(2), 121–134 (2019)

    Google Scholar 

  29. Ezuz, D., Solomon, J., Ben-Chen, M.: Reversible harmonic maps between discrete surfaces. ACM Trans. Graph. 38(2), 15 (2019)

    Google Scholar 

  30. Ezuz, D., Solomon, J., Kim, V., Ben-Chen, M.: Gwcnn: a metric alignment layer for deep shape analysis. Comput. Graph. Forum (Proc. SGP) 36(5), 49–57 (2017)

    Google Scholar 

  31. Fish, N., van Kaick, O., Bermano, A., Cohen-Or, D.: Structure-oriented networks of shape collections. ACM Trans. Graph. 35(6), 171 (2016)

    Google Scholar 

  32. Ganapathi-Subramanian, V., Thibert, B., Ovsjanikov, M., Guibas, L.: Stable region correspondences between non-isometric shapes. Comput. Graph. Forum 35(5), 121–133 (2016)

    Google Scholar 

  33. Gehre, A., Bronstein, M., Kobbelt, L., Solomon, J.: Interactive curve constrained functional maps. Comput. Graph. Forum 37(5), 1–12 (2018)

    Google Scholar 

  34. Groueix, T., Fisher, M., Kim, V.G., Russell, B., Aubry, M.: Unsupervised cycle-consistent deformation for shape matching. Comput. Graph. Forum 38(5), 123–133 (2019)

    Google Scholar 

  35. Groueix, T., Fisher, M., Kim, V.G., Russell, B.C., Aubry, M.: 3D-coded: 3D correspondences by deep deformation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 230–246 (2018)

  36. Guo, H., Zhu, D., Mordohai, P.: Correspondence estimation for non-rigid point clouds with automatic part discovery. Vis. Comput. 32(12), 1511–1524 (2016)

    Google Scholar 

  37. Halimi, O., Litany, O., Rodola, E., Bronstein, A.M., Kimmel, R.: Unsupervised learning of dense shape correspondence. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4370–4379 (2019)

  38. Hu, R., Savva, M., van Kaick, O.: Functionality representations and applications for shape analysis. Comput. Graph. Forum 37(2), 603–624 (2018)

    Google Scholar 

  39. Huang, Q., Guibas, L.: Consistent shape maps via semidefinite programming. Comput. Graph. Forum (Proc. SGP) 32(5), 177–186 (2013)

    Google Scholar 

  40. Huang, Q., Wang, F., Guibas, L.: Functional map networks for analyzing and exploring large shape collections. ACM Trans. Graph. (TOG) 33(4), 36 (2014)

    MATH  Google Scholar 

  41. Huang, Q., Zhang, G., Gao, L., Hu, S., Bustcher, A., Guibas, L.: An optimization approach for extracting and encoding consistent maps in a shape collection. ACM Trans. Graph. (TOG) Proc. SIGGRAPH Asia 31(6), 167 (2012)

    Google Scholar 

  42. Huang, R., Achlioptas, P., Guibas, L., Ovsjanikov, M.: Limit shapes—a tool for understanding shape differences and variability in 3D model collections. Comput. Graph. Forum 38(5), 187–202 (2019)

    Google Scholar 

  43. Huang, R., Ovsjanikov, M.: Adjoint map representation for shape analysis and matching. Comput. Graph. Forum 36(5), 151–163 (2017)

    Google Scholar 

  44. Jacobson, A., Deng, Z., Kavan, L., Lewis, J.P.: Skinning: real-time shape deformation. In: ACM SIGGRAPH 2014 Courses, vol. 24 (2014)

  45. Kim, V., Li, W., Mitra, N., DiVerdi, S., Funkhouser, T.: Exploring collections of 3D models using fuzzy correspondences. Proc. SIGGRAPH 31, 54-1 (2012)

    Google Scholar 

  46. Kim, V., Lipman, Y., Funkhouser, T.: Blended intrinsic maps. ACM Trans. Graph. 30(4), 79 (2011)

    Google Scholar 

  47. Kim, V.G., Chaudhuri, S., Guibas, L., Funkhouser, T.: Shape2pose: human-centric shape analysis. ACM Trans. Graph. (TOG) 33(4), 120 (2014)

    Google Scholar 

  48. Kim, V.G., Li, W., Mitra, N.J., Chaudhuri, S., DiVerdi, S., Funkhouser, T.: Learning part-based templates from large collections of 3D shapes. ACM Trans. Graph. (TOG) 32(4), 70 (2013)

    MATH  Google Scholar 

  49. Kovnatsky, A., Bronstein, M., Bresson, X., Vandergheynst, P.: Functional correspondence by matrix completion. In: Proceedings of Computer Vision and Pattern Recognition, pp. 905–914 (2015)

  50. Küpçü, E., Yemez, Y.: Diffusion-based isometric depth correspondence. Comput. Vis. Image Underst. (2019) (in press)

  51. Lahner, Z., Rodolà, E., Bronstein, M., Cremers, D., Burghard, O., Cosmo, L., Dieckmann, A., Klein, R., Sahillioğlu, Y.: Shrec’16: matching of deformable shapes with topological noise. In: Proceedings of Eurographics Workshop on 3D Object Retrieval (2016)

  52. Lee, S., Kazhdan, M.: Dense point-to-point correspondences between genus-zero shapes. Comput. Graph. Forum 38(5), 27–37 (2019)

    Google Scholar 

  53. Li, X., Iyengar, S.S.: On computing mapping of 3D objects: a survey. ACM Comput. Surv. 47(2), 34:1–34:45 (2014)

    Google Scholar 

  54. Lian, Z., Godil, A., Bustos, B., Daoudi, M., Hermans, J., Kawamura, S., Kurita, Y., Lavoué, G., Van Nguyen, H., Ohbuchi, R., et al.: A comparison of methods for non-rigid 3D shape retrieval. Pattern Recognit. 46(1), 449–461 (2013)

    Google Scholar 

  55. Lim, I., Dielen, A., Campen, M., Kobbelt, L.: A simple approach to intrinsic correspondence learning on unstructured 3D meshes. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)

  56. Litany, O., Remez, T., Rodolà, E., Bronstein, A.M., Bronstein, M.M.: Deep functional maps: structured prediction for dense shape correspondence. In: Proceedings of International Conference on Computer Vision (2017)

  57. Litany, O., Rodolà, E., Bronstein, A., Bronstein, M.: Fully spectral partial shape matching. Comput. Graph. Forum 36(2), 247–258 (2017)

    Google Scholar 

  58. Litany, O., Rodolà, E., Bronstein, A., Bronstein, M., Cremers, D.: Non-rigid puzzles. Comput. Graph. Forum (Proc. SGP) 35(5), 135–143 (2016)

    Google Scholar 

  59. Litman, R., Bronstein, A.M.: Learning spectral descriptors for deformable shape correspondence. IEEE Trans. Pattern Anal. Mach. Intell. 36(1), 171–180 (2014)

    Google Scholar 

  60. Liu, T., Kim, V.G., Funkhouser, T.: Finding surface correspondences using symmetry axis curves. Comput. Graph. Forum (Proc. SGP) 31(5), 1607–1616 (2012)

    Google Scholar 

  61. Liu, Z.-B., Bu, S.-H., Zhou, K., Gao, S.-M., Han, J.-W., Wu, J.: A survey on partial retrieval of 3D shapes. J. Comput. Sci. Technol. 28(5), 836–851 (2013)

    Google Scholar 

  62. Mandad, M., Cohen-Steiner, D., Kobbelt, L., Alliez, P., Desbrun, M.: Variance-minimizing transport plans for inter-surface mapping. ACM Trans. Graph. (TOG) 36(4), 39 (2017)

    Google Scholar 

  63. Maron, H., Dym, N., Kezurer, I., Kovalsky, S., Lipman, Y.: Point registration via efficient convex relaxation. ACM Trans. Graph. 35(4), 73 (2016)

    Google Scholar 

  64. Maron, H., Galun, M., Aigerman, N., Trope, M., Dym, N., Yumer, E., Kim, V.G., Lipman, Y.: Convolutional neural networks on surfaces via seamless toric covers. ACM Trans. Graph. 36(4), 71–1 (2017)

    Google Scholar 

  65. Melzi, S., Ovsjanikov, M., Roffo, G., Cristani, M., Castellani, U.: Discrete time evolution process descriptor for shape analysis and matching. ACM Trans. Graph. (TOG) 37(1), 4 (2018)

    Google Scholar 

  66. Melzi, S., Rodolà, E., Castellani, U., Bronstein, M.M.: Localized manifold harmonics for spectral shape analysis. Comput. Graph. Forum 37(6), 20–34 (2018)

    Google Scholar 

  67. Nguyen, A., Ben-Chen, M., Welnicka, K., Ye, Y., Guibas, L.: An optimization approach to improving collections of shape maps. Comput. Graph. Forum (Proc. SGP) 30(5), 1481–1491 (2011)

    Google Scholar 

  68. Nogneng, D., Melzi, S., Rodolà, E., Castellani, U., Bronstein, M., Ovsjanikov, M.: Improved functional mappings via product preservation. Comput. Graph. Forum 37(2), 179–190 (2018)

    Google Scholar 

  69. Nogneng, D., Ovsjanikov, M.: Informative descriptor preservation via commutativity for shape matching. Comput. Graph. Forum (Proc. Eurographics) 36(2), 259–267 (2017)

    Google Scholar 

  70. Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., Guibas, L.: Functional maps: a flexible representation of maps between shapes. ACM Trans. Graph. (TOG) Proc. SIGGRAPH 31, 30 (2012)

    Google Scholar 

  71. Ovsjanikov, M., Huang, Q., Guibas, L.: A condition number for non-rigid shape matching. Comput. Graph. Forum (Proc. SGP) 30(5), 1503–1512 (2011)

    Google Scholar 

  72. Ovsjanikov, M., Mérigot, Q., Pătrucean, V., Guibas, L.: Shape matching via quotient spaces. In: Proceedings of the Eleventh Eurographics/ACMSIGGRAPH Symposium on Geometry Processing, pp. 1–11 (2013)

  73. Panozzo, D., Baran, I., Diamanti, O., Sorkine-Hornung, O.: Weighted averages on surfaces. ACM Trans. Graph. (TOG) Proc. SIGGRAPH 32, 60 (2013)

    MATH  Google Scholar 

  74. Pokrass, J., Bronstein, A., Bronstein, M., Sprechmann, P., Sapiro, G.: Sparse modeling of intrinsic correspondences. Comput. Graph. Forum 32(2), 459–468 (2013)

    MATH  Google Scholar 

  75. Pokrass, J., Bronstein, A.M., Bronstein, M.M.: A correspondence-less approach to matching of deformable shapes. In: Proceedings of Scale Space and Variational Methods (2011)

  76. Poulenard, A., Skraba, P., Ovsjanikov, M.: Topological function optimization for continuous shape matching. Comput. Graph. Forum 37(5), 13–25 (2018)

    Google Scholar 

  77. Ren, J., Panine, M., Wonka, P., Ovsjanikov, M.: Structured regularization of functional map computations. Comput. Graph. Forum 38(5), 39–53 (2019)

    Google Scholar 

  78. Ren, J., Poulenard, A., Wonka, P., Ovsjanikov, M.: Continuous and orientation-preserving correspondences via functional maps. In: SIGGRAPH Asia 2018 Technical Papers, p. 248 (2018)

  79. Rodolà, E., Bronstein, A., Albarelli, A., Bergamasco, F., Torsello, A.: A game-theoretic approach to deformable shape matching. In: Proceedings of Computer Vision and Pattern Recognition, pp. 182–189 (2012)

  80. Rodolà, S. Bulo, E., Windheuser, T., Vestner, M., Cremers, D.: Dense non-rigid shape correspondence using random forests. In: Proceedings of Computer Vision and Pattern Recognition, pp. 4177–4184 (2014)

  81. Rodolà, E., Cosmo, L., Bronstein, M.M., Torsello, A., Cremers, D.: Partial functional correspondence. Comput. Graph. Forum 36(1), 222–236 (2017)

    Google Scholar 

  82. Rodolà, E., Möller, M., Cremers, D.: Regularized pointwise map recovery from functional correspondence. Comput. Graph. Forum 36(8), 700–711 (2017)

    Google Scholar 

  83. Rustamov, R., Ovsjanikov, M., Azencot, O., Ben-Chen, M., Chazal, F., Guibas, L.: Map-based exploration of intrinsic shape differences and variability. ACM Trans. Graph. 32(4), 72 (2013)

    MATH  Google Scholar 

  84. Sahillioğlu, Y.: A genetic isometric shape correspondence algorithm with adaptive sampling. ACM Trans. Graph. (TOG) 37(5), 175 (2018)

    Google Scholar 

  85. Sahillioğlu, Y.: A shape deformation algorithm for constrained multidimensional scaling. Comput. Graph. 53, 156–165 (2015)

    Google Scholar 

  86. Sahillioğlu, Y., Kavan, L.: Skuller: a volumetric shape registration algorithm for modeling skull deformities. Med. Image Anal. 23(1), 15–27 (2015)

    Google Scholar 

  87. Sahillioğlu, Y., Yemez, Y.: Coarse-to-fine combinatorial matching for dense isometric shape correspondence. Comput. Graph. Forum (Proc. SGP) 30(5), 1461–1470 (2011)

    Google Scholar 

  88. Sahillioğlu, Y., Yemez, Y.: Minimum-distortion isometric shape correspondence using EM algorithm. IEEE Trans. PAMI 34(11), 2203–2215 (2012)

    Google Scholar 

  89. Sahillioğlu, Y., Yemez, Y.: Scale normalization for isometric shape matching. Comput. Graph. Forum (Proc. Pac. Graph.) 31(7), 2233–2240 (2012)

    Google Scholar 

  90. Sahillioğlu, Y., Yemez, Y.: Coarse-to-fine isometric shape correspondence by tracking symmetric flips. Comput. Graph. Forum 32(1), 177–189 (2013)

    Google Scholar 

  91. Sahillioğlu, Y., Yemez, Y.: Multiple shape correspondence by dynamic programming. Comput. Graph. Forum (Proc. Pac. Graph.) 33(7), 121–130 (2014)

    Google Scholar 

  92. Sahillioğlu, Y., Yemez, Y.: Partial 3D correspondence from shape extremities. Comput. Graph. Forum 33(6), 63–76 (2014)

    Google Scholar 

  93. Shapira, N., Ben-Chen, M.: Cross-collection map inference by intrinsic alignment of shape spaces. Comput. Graph. Forum 33(5), 281–290 (2014)

    Google Scholar 

  94. Shoham, M., Vaxman, A., Ben-Chen, M.: Hierarchical functional maps between subdivision surfaces. Comput. Graph. Forum 38(5), 55–73 (2019)

    Google Scholar 

  95. Shtern, A., Kimmel, R.: Spectral gradient fields embedding for nonrigid shape matching. Comput. Vis. Image Underst. 140, 21–29 (2015)

    Google Scholar 

  96. Solomon, J., Nguyen, A., Butscher, A., Ben-Chen, M., Guibas, L.: Soft maps between surfaces. Comput. Graph. Forum 31(5), 1617–1626 (2012)

    Google Scholar 

  97. Solomon, J., Peyre, G., Kim, V., Sra, S.: Entropic metric alignment for correspondence problems. ACM Trans. Graph. 35(4), 72 (2016)

    Google Scholar 

  98. Tam, G., Cheng, Z., Lai, Y., Langbein, F., Liu, Y., Marshall, D., Martin, R., Sun, X., Rosin, P.: Registration of 3D point clouds and meshes: a survey from rigid to non-rigid. IEEE Trans. Vis. Comput. Graph. 19(7), 1199–1217 (2013)

    Google Scholar 

  99. Tam, G.K., Martin, R.R., Rosin, P.L., Lai, Y.: Diffusion pruning for rapidly and robustly selecting global correspondences using local isometry. ACM Trans. Graph. 33(1), 1–17 (2014)

    MATH  Google Scholar 

  100. Tam, G.K., Martin, R.R., Rosin, P.L., Lai, Y.-K.: An efficient approach to correspondences between multiple non-rigid parts. Comput. Graph. Forum 33, 137–146 (2014)

    Google Scholar 

  101. Tevs, A., Berner, A., Wand, M., Ihrke, I., Seidel, H.-P.: Intrinsic shape matching by planned landmark sampling. Comput. Graph. Forum (Proc. Eurographics) 30(2), 543–552 (2011)

    Google Scholar 

  102. van Kaick, O., Tagliasacchi, A., Sidi, O., Zhang, H., Cohen-Or, D., Wolf, L., Hamarneh, G.: Prior knowledge for part correspondence. Comput. Graph. Forum 30(2), 553–562 (2011)

    Google Scholar 

  103. van Kaick, O., Zhang, H., Hamarneh, G.: Bilateral maps for partial matching. Comput. Graph. Forum 32(6), 189–200 (2013)

    Google Scholar 

  104. van Kaick, O., Zhang, H., Hamarneh, G., Cohen-Or, D.: A survey on shape correspondence. In: Proceedings of Eurographics State-of-the-Art Report, pp. 1–24 (2010)

  105. van Kaick, O., Zhang, H., Hamarneh, G., Cohen-Or, D.: A survey on shape correspondence. Comput. Graph. Forum 30(6), 1681–1707 (2011)

    Google Scholar 

  106. Vestner, M., Lähner, Z., Boyarski, A., Litany, O., Slossberg, R., Remez, T., Rodola, E., Bronstein, A., Bronstein, M., Kimmel, R., et al.: Efficient deformable shape correspondence via kernel matching. In: 2017 International Conference on 3D Vision (3DV), pp. 517–526 (2017)

  107. Vestner, M., Litman, R., Rodolà, E., Bronstein, A., Cremers, D.: Product manifold filter: non-rigid shape correspondence via kernel density estimation in the product space. In: Proceedings of Computer Vision and Pattern Recognition (2017)

  108. Wang, L., Gehre, A., Bronstein, M.M., Solomon, J.: Kernel functional maps. Comput. Graph. Forum 37(5), 27–36 (2018)

    Google Scholar 

  109. Wei, L., Huang, Q., Ceylan, D., Vouga, E., Li, H.: Dense human body correspondences using convolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)

  110. Yoshiyasu, Y., Yoshida, E., Guibas, L.: Symmetry aware embedding for shape correspondence. Comput. Graph. 60, 9–22 (2016)

    Google Scholar 

  111. Zeng, A., Song, S., Nießner, M., Fisher, M., Xiao, J., Funkhouser, T.: 3DMATCH: learning local geometric descriptors from RGB-D reconstructions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1802–1811 (2017)

  112. Zhang, Z., Yin, K., Foong, K.: Symmetry robust descriptor for non-rigid surface matching. Comput. Graph. Forum 32(7), 355–362 (2013)

    Google Scholar 

  113. Zheng, X., Wen, C., Lei, N., Ma, M., Gu, X.: Surface registration via foliation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 938–947 (2017)

  114. Zheng, Y., Cohen-Or, D., Averkiou, M., Mitra, N.J.: Recurring part arrangements in shape collections. Comput. Graph. Forum 33(2), 115–124 (2014)

    Google Scholar 

  115. Zhou, T., Krahenbuhl, P., Aubry, M., Huang, Q., Efros, A.A.: Learning dense correspondence via 3D-guided cycle consistency. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 117–126 (2016)

  116. Zhu, C., Yi, R., Lira, W., Alhashim, I., Xu, K., Zhang, H.: Deformation-driven shape correspondence via shape recognition. ACM Trans. Graph. 36(4), 51 (2017)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by TUBITAK under the Project EEEAG-115E471.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf Sahillioğlu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahillioğlu, Y. Recent advances in shape correspondence. Vis Comput 36, 1705–1721 (2020). https://doi.org/10.1007/s00371-019-01760-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-019-01760-0

Keywords