Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Average Eccentricity of Sierpiński Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

We determine the eccentricity of an arbitrary vertex, the average eccentricity and its standard deviation for all Sierpiński graphs \({S_p^n}\). Special cases are the graphs \({S_2^{n}}\), which are isomorphic to the state graphs of the Chinese Rings puzzle with n rings and the graphs \({S_3^{n}}\) isomorphic to the Hanoi graphs \({H_3^{n}}\) representing the Tower of Hanoi puzzle with 3 pegs and n discs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afriat S.N.: The Ring of Linked Rings. Duckworth, London (1982)

    Google Scholar 

  2. Buckley F., Harary F.: Distance in Graphs. Addison-Wesley, Redwood City (1990)

    MATH  Google Scholar 

  3. Dankelmann P., Goddard W., Swart C.S.: The average eccentricity of a graph and its subgraphs. Util. Math. 65, 41–51 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Graham R.L., Knuth D.E., Patashnik O.: Concrete Mathematics, 2nd edn. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  5. Hinz A.M.: The Tower of Hanoi. Enseign. Math. (2) 35, 289–321 (1989)

    MathSciNet  MATH  Google Scholar 

  6. Hinz A.M.: Pascal’s triangle and the Tower of Hanoi. Am. Math. Monthly 99, 538–544 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hinz, A.M.: The Tower of Hanoi. In: Shum, K.P., Taft, E.J., Wan, Z.X. (eds.) Algebras and Combinatorics. An International Congress, ICAC ’97, Hong Kong, pp. 277–289. Springer, Singapore (1999)

  8. Hinz, A.M.: Graph theory of tower tasks. Behavioural Neurology (to appear, 2011)

  9. Hinz A. M., Klavžar S., Milutinović U., Parisse D., Petr C.: Metric properties of the Tower of Hanoi graphs and Stern’s diatomic sequence. Eur. J. Combin. 26, 693–708 (2005)

    Article  Google Scholar 

  10. Hinz A.M., Kostov A., Kneißl F., Sürer F., Danek A.: A mathematical model and a computer tool for the Tower of Hanoi and Tower of London puzzles. Inform. Sci. 179, 2934–2947 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hinz, A.M., Parisse, D.: Coloring Hanoi and Sierpiński graphs. Discrete Math. (to appear, 2011)

  12. Hinz A.M., Schief A.: The average distance on the Sierpiński gasket. Probab. Theory Relat. Fields 87, 129–138 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jakovac M., Klavžar S.: Vertex-, edge-, and total colorings of Sierpiński-like graphs. Discrete Math. 309, 1548–1556 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Klavžar S.: Coloring Sierpiński graphs and Sierpiński gasket graphs. Taiwan J. Math. 12, 513–522 (2008)

    MATH  Google Scholar 

  15. Klavžar S., Milutinović U.: Graphs S(n, k) and a variant of the Tower of Hanoi problem. Czechoslov. Math. J. 47(122), 95–104 (1997)

    Article  MATH  Google Scholar 

  16. Klavžar S., Milutinović U., Petr C.: 1-perfect codes in Sierpiński graphs. Bull. Austral. Math. Soc. 66, 369–384 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Klavžar S., Mohar B.: Crossing numbers of Sierpiński-like graphs. J. Graph Theory 50, 186–198 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Korf R. Best-first frontier search with delayed duplicate detection. In: McGuinness, D.L., Ferguson, G. (eds) Proceedings of the Nineteenth National Conference on Artificial Intelligence (AAAI-2004), pp. 650–657. AAAI Press/The MIT Press, Menlo Park/Cambridge (2004)

  19. Parisse D.: The Tower of Hanoi and the Stern-Brocot Array. Thesis, München (1997)

  20. Parisse D.: On some metric properties of the Sierpiński graphs S(n, k). Ars Comb. 90, 145–160 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Romik D.: Shortest paths in the Tower of Hanoi graph and finite automata. SIAM J. Discrete Math. 20, 610–622 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sloane’s Online Encyclopedia of Integer Sequences. http://www.research.att.com/~njas/sequences/ (2011–07–26)

  23. Wiesenberger, H.L.: Stochastische Eigenschaften von Hanoi- und Sierpiński-Graphen. Thesis of Diploma, München (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas M. Hinz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hinz, A.M., Parisse, D. The Average Eccentricity of Sierpiński Graphs. Graphs and Combinatorics 28, 671–686 (2012). https://doi.org/10.1007/s00373-011-1076-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-011-1076-4

Keywords

Mathematics Subject Classification (2010)