Abstract
We determine the eccentricity of an arbitrary vertex, the average eccentricity and its standard deviation for all Sierpiński graphs \({S_p^n}\). Special cases are the graphs \({S_2^{n}}\), which are isomorphic to the state graphs of the Chinese Rings puzzle with n rings and the graphs \({S_3^{n}}\) isomorphic to the Hanoi graphs \({H_3^{n}}\) representing the Tower of Hanoi puzzle with 3 pegs and n discs.
Similar content being viewed by others
References
Afriat S.N.: The Ring of Linked Rings. Duckworth, London (1982)
Buckley F., Harary F.: Distance in Graphs. Addison-Wesley, Redwood City (1990)
Dankelmann P., Goddard W., Swart C.S.: The average eccentricity of a graph and its subgraphs. Util. Math. 65, 41–51 (2004)
Graham R.L., Knuth D.E., Patashnik O.: Concrete Mathematics, 2nd edn. Addison-Wesley, Reading (1994)
Hinz A.M.: The Tower of Hanoi. Enseign. Math. (2) 35, 289–321 (1989)
Hinz A.M.: Pascal’s triangle and the Tower of Hanoi. Am. Math. Monthly 99, 538–544 (1992)
Hinz, A.M.: The Tower of Hanoi. In: Shum, K.P., Taft, E.J., Wan, Z.X. (eds.) Algebras and Combinatorics. An International Congress, ICAC ’97, Hong Kong, pp. 277–289. Springer, Singapore (1999)
Hinz, A.M.: Graph theory of tower tasks. Behavioural Neurology (to appear, 2011)
Hinz A. M., Klavžar S., Milutinović U., Parisse D., Petr C.: Metric properties of the Tower of Hanoi graphs and Stern’s diatomic sequence. Eur. J. Combin. 26, 693–708 (2005)
Hinz A.M., Kostov A., Kneißl F., Sürer F., Danek A.: A mathematical model and a computer tool for the Tower of Hanoi and Tower of London puzzles. Inform. Sci. 179, 2934–2947 (2009)
Hinz, A.M., Parisse, D.: Coloring Hanoi and Sierpiński graphs. Discrete Math. (to appear, 2011)
Hinz A.M., Schief A.: The average distance on the Sierpiński gasket. Probab. Theory Relat. Fields 87, 129–138 (1990)
Jakovac M., Klavžar S.: Vertex-, edge-, and total colorings of Sierpiński-like graphs. Discrete Math. 309, 1548–1556 (2009)
Klavžar S.: Coloring Sierpiński graphs and Sierpiński gasket graphs. Taiwan J. Math. 12, 513–522 (2008)
Klavžar S., Milutinović U.: Graphs S(n, k) and a variant of the Tower of Hanoi problem. Czechoslov. Math. J. 47(122), 95–104 (1997)
Klavžar S., Milutinović U., Petr C.: 1-perfect codes in Sierpiński graphs. Bull. Austral. Math. Soc. 66, 369–384 (2002)
Klavžar S., Mohar B.: Crossing numbers of Sierpiński-like graphs. J. Graph Theory 50, 186–198 (2005)
Korf R. Best-first frontier search with delayed duplicate detection. In: McGuinness, D.L., Ferguson, G. (eds) Proceedings of the Nineteenth National Conference on Artificial Intelligence (AAAI-2004), pp. 650–657. AAAI Press/The MIT Press, Menlo Park/Cambridge (2004)
Parisse D.: The Tower of Hanoi and the Stern-Brocot Array. Thesis, München (1997)
Parisse D.: On some metric properties of the Sierpiński graphs S(n, k). Ars Comb. 90, 145–160 (2009)
Romik D.: Shortest paths in the Tower of Hanoi graph and finite automata. SIAM J. Discrete Math. 20, 610–622 (2006)
Sloane’s Online Encyclopedia of Integer Sequences. http://www.research.att.com/~njas/sequences/ (2011–07–26)
Wiesenberger, H.L.: Stochastische Eigenschaften von Hanoi- und Sierpiński-Graphen. Thesis of Diploma, München (2010)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hinz, A.M., Parisse, D. The Average Eccentricity of Sierpiński Graphs. Graphs and Combinatorics 28, 671–686 (2012). https://doi.org/10.1007/s00373-011-1076-4
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00373-011-1076-4