Abstract
The concept of rainbow connection was introduced by Chartrand et al. [14] in 2008. It is interesting and recently quite a lot papers have been published about it. In this survey we attempt to bring together most of the results and papers that dealt with it. We begin with an introduction, and then try to organize the work into five categories, including (strong) rainbow connection number, rainbow k-connectivity, k-rainbow index, rainbow vertex-connection number, algorithms and computational complexity. This survey also contains some conjectures, open problems and questions.
Similar content being viewed by others
References
Ahadi, A., Dehghan, A.: On rainbow connection of strongly regular graphs. arXiv:1001.3413v1 [math.CO] (2010)
Alon N., Duke R., Lefmann H., Rödl V., Yuster R.: The algorithmic aspects of the Regularity Lemma. J. Algorithms 6, 80–109 (1994)
Alon N., Spencer J.: The Probabilistic Method, 2nd edn. Wiley, New York (2000)
Ananth, P., Nasre, M.: New hardness results in rainbow connectivity. arXiv:1104.2074v1 [cs.CC] (2011)
Basavaraju, M., Chandran, L.S., Rajendraprasad, D., Ramaswamy, A.: Rainbow connection number and radius. Graphs Combin. (2012) (to appear)
Basavaraju, M., Chandran, L.S., Rajendraprasad, D., Ramaswamy, A.: Rainbow connection number of graph power and graph products. arXiv:1104.4190v1 [math.CO] (2011)
Blum A., Karger D.: An Õ (n 3/14)-coloring algorithm for 3-colorable graphs. Inf. Process. Lett. 61(1), 49–53 (1997)
Bollobás B., Thomason A.: Threshold functions. Combinatorica 7, 35–38 (1986)
Bondy, J.A., Murty, U.S.R.: Graph Theory. GTM 244, Springer, Berlin (2008)
Bourgain J.: More on the sum-product phenomenon in prime fields and its applications. Int. J. Number Theory 1, 1–32 (2005)
Caro Y., Lev A., Roditty Y., Tuza Z., Yuster R.: On rainbow connection. Electron. J. Combin. 15, R57 (2008)
Chakraborty, S., Fischer, E., Matsliah, A., Yuster, R.: Hardness and algorithms for rainbow connectivity. In: 26th International Symposium on Theoretical Aspects of Computer Science STACS 2009, pp. 243–254 (2009) (Also, see J. Combin. Optim. 21, 330–347 (2011))
Chandran L.S., Das A., Rajendraprasad D., Varma N.M.: Rainbow connection number and connected dominating sets. J. Graph Theory 71, 206–218 (2012)
Chartrand G., Johns G.L., McKeon K.A., Zhang P.: Rainbow connection in graphs. Math. Bohem. 133, 85–98 (2008)
Chandran, L.S., Rajendraprasad, D.: Rainbow colouring of split and threshold graphs COCOON. In: LNCS, vol. 7434, pp. 181–192. Springer, Berlin (2012)
Chartrand G., Johns G.L., McKeon K.A., Zhang P.: On the rainbow connectivity of cages. Congr. Numer. 184, 209–222 (2007)
Chartrand G., Johns G.L., McKeon K.A., Zhang P.: The rainbow connectivity of a graph. Networks 54(2), 75–81 (2009)
Chartrand G., Okamoto F., Zhang P.: Rainbow trees in graphs and generalized connectivity. Networks 55, 360–367 (2010)
Chartrand, G., Zhang, P.: Chromatic Graph Theory. Chapman & Hall, London (2008)
Chen, L., Li, X., Lian, H.: Nordhaus-Gaddum-type theorem for rainbow connection number of graphs. Graphs Combin. (2012) (in press)
Chen L., Li X., Liu M.: Nordhaus-Gaddum-type theorem for the rainbow vertex-connection number of a graph. Util. Math. 86, 335–340 (2011)
Chen L., Li X., Shi Y.: The complexity of determining the rainbow vertex-connection of graphs. Theoret. Comput. Sci. 412, 4531–4535 (2011)
Chen X., Li X.: A solution to a conjecture on the rainbow connection number. Ars Combin. 104, 193–196 (2012)
Corneil D., Olariu S., Stewart L.: Asteroidal triple-free graphs. SIAM J. Discrete Math. 10(3), 399–430 (1997)
Dellamonica D. Jr, Magnant C., Martin D.: Rainbow paths. Discrete Math. 310, 774–781 (2010)
Dong, J., Li, X.: Upper bounds involving parameter σ2 for the rainbow connection. Acta Math. Appl. Sin. (2012) (to appear)
Dong, J., Li, X.: Rainbow connection number, bridges and radius. Graphs Combin. (2012) (in press)
Dong, J., Li, X.: Rainbow connection numbers and the minimum degree sum of a graph. Sci. China Ser. A (2012) (to appear)
Dong, J., Li, X.: Sharp upper bound for the rainbow connection number of a graph with diameter 2. arXiv:1106.1258v3 [math.CO] (2011)
Dong, J., Li, X.: On a question on graphs with rainbow connection number 2. arXiv:1109.5004v2 [math.CO] (2011)
Ekstein, J., Holub, P., Kaiser, T., Kochy, M., Camachoy, S.M., Ryjáček, Z., Schiermeyer, I.: The rainbow connection number of 2-connected graphs. Discrete Math. (2012) (in press)
Elmallah E.S., Colbourn C.J.: Series-parallel subgraphs of planar graphs. Networks 22(6), 607–614 (1992)
Erdős P., Pach J., Pollack R., Tuza Z.: Radius, diameter, and minimum degree. J. Combin. Theory, Ser. B. 47(1), 73–79 (1989)
Erdős P., Rényi A.: On the evolution of random graphs. Magyar Tud. Akad. Mat. Kutato Int. Kozl. 5, 17–61 (1960)
Ericksen, A.: A matter of security. Graduating Engineer & Computer Careers, pp. 24–28 (2007)
Fischer, E., Matsliah, A., Shapira, A.: Approximate hypergraph partitioning and applications. In: Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 579–589 (2007)
Frieze, A., Tsourakakis, C.E.: Rainbow connectivity of sparse random graphs. arXiv:1201.4603v2 [math.CO] (2012)
Friedgut E., Kalai G.: Every monotone graph property has a sharp threshold. Proc. Am. Math. Soc. 124, 2993–3002 (1996)
Fujita, S., Liu, H., Magnant, C.: Rainbow k-connection in dense graphs. preprint. Available at http://www.cantab.net/users/henry.liu/maths.htm. Extended abstract in Proceedings of Euro- Combédb́b11, Electron. Notes Discrete Math. (to appear)
Gologranca T., Mekiš G., Peterin I.: Rainbow connection and graph products. IMFM Preprint Series 49,–#1149 (2011)
Harary F., Hayes J., Wu H.: A survey of the theory of hypercube graphs. Comput. Math. Appl. 15, 277–289 (1988)
Klav̆ar, S., Mekis̆, G.: On the rainbow connection of Cartesian products and their subgraphs. Discuss. Math. Graph Theory (2012) (to appear)
He J., Liang H.: On rainbow-k-connectivity of random graphs. Inf. Process. Lett. 112(10), 406–410 (2012)
Hedetniemi, S.T., Slater, P.J.: Line graphs of triangleless graphs and iterated clique graphs. In: Alavi, Y. et al. (eds.) Graph Theory and Applications. Lecture Notes in Mathematics, vol. 303, , pp. 139–147. Springer, Berlin 1972; MR49#151
Hemminger, R., Beineke, L.: Line graphs and line digraphs. In: Beineke, L. et al. (eds.) Selected Topics in Graph Theory, pp. 271–305. Academic Press, London (1978)
Huang, X., Li, H., Li, X., Sun, Y.: Oriented diameter and rainbow connection number of a graph. arXiv:1111.3480v1 [math.CO] (2011)
Huang, X., Li X., Shi, Y.: Rainbow connection for planar graphs and line graphs. arXiv:1110.3147 [cs.CC] (2011)
Imrich W., Klavzar S.: Product Graphs–Structure and Recognition. Wiley, New York (2000)
Johns, G.L., Okamoto, F., Zhang, P.: The rainbow connectivities of small cubic graphs. Ars Combin. (2012) (to appear)
Kemnitz A., Schiermeyer I.: Graphs with rainbow connection number two. Discuss. Math. Graph Theory 31, 313–320 (2011)
Kemnitz, A., Przybylo, J., Schiermeyer I., Wozniak, M.: Rainbow connection in sparse graphs. Discuss. Math. Graph Theory (2012) (to appear)
Komlós, J., Simonovits, M.: Szemerédi’s Regularity Lemma and its applications in graph theory. In: Miklós, D., Sós, V.T., Szönyi, T. (eds.) Combinatorics, Paul Erdő is Eighty, vol. 2, pp. 295–352. Bolyai Society Mathematical Studies, Budapest (1996)
Krivelevich M., Yuster R.: The rainbow connection of a graph is (at most) reciprocal to its minimum degree. J. Graph Theory 63(3), 185–191 (2009)
Le, V., Tuza, Z.: Finding optimal rainbow connection is hard. Preprint (2009)
Li H., Li X., Liu S.: The (strong) rainbow connection numbers of Cayley graphs on Abelian groups. Comput. Math. Appl. 62(11), 4082–4088 (2011)
Li H., Li X., Liu S.: Rainbow connection in graphs with diameter 2. Discrete Math. 312(8), 1453–1457 (2012)
Li, H., Li, X., Sun, Y.: Upper bound for the rainbow connection number of bridgeless graphs with diameter 3. arXiv:1109.2769v1 [math.CO] (2011)
Li, S., Li, X.: Note on the complexity of deciding the rainbow connectedness for bipartite graphs. arXiv:1109.5534v2 [cs.CC] (2011)
Li, X., Liu, M., Schiermeyer, I.: Rainbow connection number of dense graphs. Discuss. Math. Graph Theory (2012) (to appear)
Li, X., Liu, S.: Sharp upper bound for the rainbow connection numbers of 2-connected graphs. arXiv:1105.4210v2 [math.CO] (2011)
Li, X., Liu, S.: Rainbow vertex-connection number of 2-connected graphs. arXiv:1110.5770 [math.CO] (2011)
Li, X., Liu, S.: A sharp upper bound for the rainbow 2-connection number of 2-connected graphs. arXiv:1204.0392 [math.CO] (2011)
Li X., Liu S., Chandran L.S., Mathew R., Rajendraprasad D.: Rainbow connection number and connectivity. Electron. J. Combin. 19, P20 (2012)
Li, X., Mao, Y., Shi, Y.: The strong rainbow vertex-connection of graphs. arXiv:1201.1541 [math.CO] (2011)
Li, X., Shi, Y.: On the rainbow vertex-connection. Discuss. Math. Graph Theory (2012) (to appear)
Li, X., Shi, Y.: Rainbow connection in 3-connected graphs. Graphs Combin. (2012) (in press)
Li X., Sun Y.: Rainbow connection numbers of line graphs. Ars Combin. 100, 449–463 (2011)
Li X., Sun Y: Upper bounds for the rainbow connection numbers of line graphs. Graphs Combin 28(2), 251–263 (2012)
Li X., Sun Y.: On the rainbow k-connectivity of complete graphs. Australasian J. Combin. 49, 217–226 (2011)
Li X., Sun Y.: Note on the rainbow k-connectivity of regular complete bipartite graphs. Ars Combin. 101, 513–518 (2011)
Li, X., Sun, Y.: Characterize graphs with rainbow connection number m – 2 and rainbow connection numbers of some graph operations. Preprint (2010)
Li, X., Sun, Y.: On the strong rainbow connection number. Bull. Malays. Math. Sci. Soc. (2012) (in press)
Li X., Sun Y.: Rainbow connection numbers of complementary graphs. Util. Math. 86, 23–31 (2011)
Li X., Sun Y.: Rainbow Connections of Graphs, Springer Briefs in Mathematics. Springer, New York (2012)
Mader W.: Ecken vom Grad n in minimalen n-fach zusammenhangenden Graphen. Arch. Math. 23, 219–224 (1972)
Nordhaus E.A., Gaddum J.W.: On complementary graphs. Am. Math. Monthly 63, 175–177 (1956)
Park J.H., Chwa K.Y.: Recursive circulants and their embeddings among hypercubes. Theoret. Comput. Sci. 244, 35–62 (2000)
Rao, A.: An exposition of Bourgain’s 2-source extractor. in: ECCCTR: Electronic Colloquium on Computational Complexity, Technical Reports (2007)
Rotman, J.J.: An Introduction to the Theory of Groups, GTM 148, Springer, Berlin (1994)
Schiermeyer, I.: Rainbow connection in graphs with minimum degree three. IWOCA 2009. In: LNCS, vol. 5874, pp. 432–437 (2009) (also see Discrete Appl. Math. (in press))
Shaltiel, R.: Recent developments in explicit constructions of extractors. Bull. EATCS, 67–95 (2002)
Uchizawa, K., Aoki, T., Ito, T., Suzuki, A., Zhou, X.: On the rainbow connectivity of graphs: complexity and FPT algorithms. In: COCOON 2011, LNCS, vol. 6842, pp. 86–97. Springer, Berlin (2011)
Whitney H.: Congruent graphs and the connectivity of graphs. Am. J. Math. 54, 150–168 (1932)
Yannakakis M.: The complexity of the partial order dimension problem. SIAM J. Alg. Discrete Methods 3(3), 351–358 (1982)
Author information
Authors and Affiliations
Corresponding author
Additional information
This study was supported by NSFC No.11071130.
Rights and permissions
About this article
Cite this article
Li, X., Shi, Y. & Sun, Y. Rainbow Connections of Graphs: A Survey. Graphs and Combinatorics 29, 1–38 (2013). https://doi.org/10.1007/s00373-012-1243-2
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00373-012-1243-2
Keywords
- Rainbow path
- (Strong) rainbow connection number
- Rainbow k-connectivity
- k-rainbow index
- Rainbow vertex-connection number
- Algorithm
- Computational complexity