Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Rainbow Connections of Graphs: A Survey

  • Survey
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

The concept of rainbow connection was introduced by Chartrand et al. [14] in 2008. It is interesting and recently quite a lot papers have been published about it. In this survey we attempt to bring together most of the results and papers that dealt with it. We begin with an introduction, and then try to organize the work into five categories, including (strong) rainbow connection number, rainbow k-connectivity, k-rainbow index, rainbow vertex-connection number, algorithms and computational complexity. This survey also contains some conjectures, open problems and questions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahadi, A., Dehghan, A.: On rainbow connection of strongly regular graphs. arXiv:1001.3413v1 [math.CO] (2010)

  2. Alon N., Duke R., Lefmann H., Rödl V., Yuster R.: The algorithmic aspects of the Regularity Lemma. J. Algorithms 6, 80–109 (1994)

    Article  Google Scholar 

  3. Alon N., Spencer J.: The Probabilistic Method, 2nd edn. Wiley, New York (2000)

    Book  MATH  Google Scholar 

  4. Ananth, P., Nasre, M.: New hardness results in rainbow connectivity. arXiv:1104.2074v1 [cs.CC] (2011)

  5. Basavaraju, M., Chandran, L.S., Rajendraprasad, D., Ramaswamy, A.: Rainbow connection number and radius. Graphs Combin. (2012) (to appear)

  6. Basavaraju, M., Chandran, L.S., Rajendraprasad, D., Ramaswamy, A.: Rainbow connection number of graph power and graph products. arXiv:1104.4190v1 [math.CO] (2011)

  7. Blum A., Karger D.: An Õ (n 3/14)-coloring algorithm for 3-colorable graphs. Inf. Process. Lett. 61(1), 49–53 (1997)

    Article  MathSciNet  Google Scholar 

  8. Bollobás B., Thomason A.: Threshold functions. Combinatorica 7, 35–38 (1986)

    Article  Google Scholar 

  9. Bondy, J.A., Murty, U.S.R.: Graph Theory. GTM 244, Springer, Berlin (2008)

  10. Bourgain J.: More on the sum-product phenomenon in prime fields and its applications. Int. J. Number Theory 1, 1–32 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Caro Y., Lev A., Roditty Y., Tuza Z., Yuster R.: On rainbow connection. Electron. J. Combin. 15, R57 (2008)

    MathSciNet  Google Scholar 

  12. Chakraborty, S., Fischer, E., Matsliah, A., Yuster, R.: Hardness and algorithms for rainbow connectivity. In: 26th International Symposium on Theoretical Aspects of Computer Science STACS 2009, pp. 243–254 (2009) (Also, see J. Combin. Optim. 21, 330–347 (2011))

  13. Chandran L.S., Das A., Rajendraprasad D., Varma N.M.: Rainbow connection number and connected dominating sets. J. Graph Theory 71, 206–218 (2012)

    Article  MATH  Google Scholar 

  14. Chartrand G., Johns G.L., McKeon K.A., Zhang P.: Rainbow connection in graphs. Math. Bohem. 133, 85–98 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Chandran, L.S., Rajendraprasad, D.: Rainbow colouring of split and threshold graphs COCOON. In: LNCS, vol. 7434, pp. 181–192. Springer, Berlin (2012)

  16. Chartrand G., Johns G.L., McKeon K.A., Zhang P.: On the rainbow connectivity of cages. Congr. Numer. 184, 209–222 (2007)

    MathSciNet  MATH  Google Scholar 

  17. Chartrand G., Johns G.L., McKeon K.A., Zhang P.: The rainbow connectivity of a graph. Networks 54(2), 75–81 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chartrand G., Okamoto F., Zhang P.: Rainbow trees in graphs and generalized connectivity. Networks 55, 360–367 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Chartrand, G., Zhang, P.: Chromatic Graph Theory. Chapman & Hall, London (2008)

  20. Chen, L., Li, X., Lian, H.: Nordhaus-Gaddum-type theorem for rainbow connection number of graphs. Graphs Combin. (2012) (in press)

  21. Chen L., Li X., Liu M.: Nordhaus-Gaddum-type theorem for the rainbow vertex-connection number of a graph. Util. Math. 86, 335–340 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Chen L., Li X., Shi Y.: The complexity of determining the rainbow vertex-connection of graphs. Theoret. Comput. Sci. 412, 4531–4535 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chen X., Li X.: A solution to a conjecture on the rainbow connection number. Ars Combin. 104, 193–196 (2012)

    MathSciNet  Google Scholar 

  24. Corneil D., Olariu S., Stewart L.: Asteroidal triple-free graphs. SIAM J. Discrete Math. 10(3), 399–430 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dellamonica D. Jr, Magnant C., Martin D.: Rainbow paths. Discrete Math. 310, 774–781 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dong, J., Li, X.: Upper bounds involving parameter σ2 for the rainbow connection. Acta Math. Appl. Sin. (2012) (to appear)

  27. Dong, J., Li, X.: Rainbow connection number, bridges and radius. Graphs Combin. (2012) (in press)

  28. Dong, J., Li, X.: Rainbow connection numbers and the minimum degree sum of a graph. Sci. China Ser. A (2012) (to appear)

  29. Dong, J., Li, X.: Sharp upper bound for the rainbow connection number of a graph with diameter 2. arXiv:1106.1258v3 [math.CO] (2011)

  30. Dong, J., Li, X.: On a question on graphs with rainbow connection number 2. arXiv:1109.5004v2 [math.CO] (2011)

  31. Ekstein, J., Holub, P., Kaiser, T., Kochy, M., Camachoy, S.M., Ryjáček, Z., Schiermeyer, I.: The rainbow connection number of 2-connected graphs. Discrete Math. (2012) (in press)

  32. Elmallah E.S., Colbourn C.J.: Series-parallel subgraphs of planar graphs. Networks 22(6), 607–614 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  33. Erdős P., Pach J., Pollack R., Tuza Z.: Radius, diameter, and minimum degree. J. Combin. Theory, Ser. B. 47(1), 73–79 (1989)

    Article  MathSciNet  Google Scholar 

  34. Erdős P., Rényi A.: On the evolution of random graphs. Magyar Tud. Akad. Mat. Kutato Int. Kozl. 5, 17–61 (1960)

    MathSciNet  Google Scholar 

  35. Ericksen, A.: A matter of security. Graduating Engineer & Computer Careers, pp. 24–28 (2007)

  36. Fischer, E., Matsliah, A., Shapira, A.: Approximate hypergraph partitioning and applications. In: Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 579–589 (2007)

  37. Frieze, A., Tsourakakis, C.E.: Rainbow connectivity of sparse random graphs. arXiv:1201.4603v2 [math.CO] (2012)

  38. Friedgut E., Kalai G.: Every monotone graph property has a sharp threshold. Proc. Am. Math. Soc. 124, 2993–3002 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  39. Fujita, S., Liu, H., Magnant, C.: Rainbow k-connection in dense graphs. preprint. Available at http://www.cantab.net/users/henry.liu/maths.htm. Extended abstract in Proceedings of Euro- Combédb́b11, Electron. Notes Discrete Math. (to appear)

  40. Gologranca T., Mekiš G., Peterin I.: Rainbow connection and graph products. IMFM Preprint Series 49,–#1149 (2011)

  41. Harary F., Hayes J., Wu H.: A survey of the theory of hypercube graphs. Comput. Math. Appl. 15, 277–289 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  42. Klav̆ar, S., Mekis̆, G.: On the rainbow connection of Cartesian products and their subgraphs. Discuss. Math. Graph Theory (2012) (to appear)

  43. He J., Liang H.: On rainbow-k-connectivity of random graphs. Inf. Process. Lett. 112(10), 406–410 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Hedetniemi, S.T., Slater, P.J.: Line graphs of triangleless graphs and iterated clique graphs. In: Alavi, Y. et al. (eds.) Graph Theory and Applications. Lecture Notes in Mathematics, vol. 303, , pp. 139–147. Springer, Berlin 1972; MR49#151

  45. Hemminger, R., Beineke, L.: Line graphs and line digraphs. In: Beineke, L. et al. (eds.) Selected Topics in Graph Theory, pp. 271–305. Academic Press, London (1978)

  46. Huang, X., Li, H., Li, X., Sun, Y.: Oriented diameter and rainbow connection number of a graph. arXiv:1111.3480v1 [math.CO] (2011)

  47. Huang, X., Li X., Shi, Y.: Rainbow connection for planar graphs and line graphs. arXiv:1110.3147 [cs.CC] (2011)

  48. Imrich W., Klavzar S.: Product Graphs–Structure and Recognition. Wiley, New York (2000)

    MATH  Google Scholar 

  49. Johns, G.L., Okamoto, F., Zhang, P.: The rainbow connectivities of small cubic graphs. Ars Combin. (2012) (to appear)

  50. Kemnitz A., Schiermeyer I.: Graphs with rainbow connection number two. Discuss. Math. Graph Theory 31, 313–320 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  51. Kemnitz, A., Przybylo, J., Schiermeyer I., Wozniak, M.: Rainbow connection in sparse graphs. Discuss. Math. Graph Theory (2012) (to appear)

  52. Komlós, J., Simonovits, M.: Szemerédi’s Regularity Lemma and its applications in graph theory. In: Miklós, D., Sós, V.T., Szönyi, T. (eds.) Combinatorics, Paul Erdő is Eighty, vol. 2, pp. 295–352. Bolyai Society Mathematical Studies, Budapest (1996)

  53. Krivelevich M., Yuster R.: The rainbow connection of a graph is (at most) reciprocal to its minimum degree. J. Graph Theory 63(3), 185–191 (2009)

    MathSciNet  Google Scholar 

  54. Le, V., Tuza, Z.: Finding optimal rainbow connection is hard. Preprint (2009)

  55. Li H., Li X., Liu S.: The (strong) rainbow connection numbers of Cayley graphs on Abelian groups. Comput. Math. Appl. 62(11), 4082–4088 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  56. Li H., Li X., Liu S.: Rainbow connection in graphs with diameter 2. Discrete Math. 312(8), 1453–1457 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  57. Li, H., Li, X., Sun, Y.: Upper bound for the rainbow connection number of bridgeless graphs with diameter 3. arXiv:1109.2769v1 [math.CO] (2011)

  58. Li, S., Li, X.: Note on the complexity of deciding the rainbow connectedness for bipartite graphs. arXiv:1109.5534v2 [cs.CC] (2011)

  59. Li, X., Liu, M., Schiermeyer, I.: Rainbow connection number of dense graphs. Discuss. Math. Graph Theory (2012) (to appear)

  60. Li, X., Liu, S.: Sharp upper bound for the rainbow connection numbers of 2-connected graphs. arXiv:1105.4210v2 [math.CO] (2011)

  61. Li, X., Liu, S.: Rainbow vertex-connection number of 2-connected graphs. arXiv:1110.5770 [math.CO] (2011)

  62. Li, X., Liu, S.: A sharp upper bound for the rainbow 2-connection number of 2-connected graphs. arXiv:1204.0392 [math.CO] (2011)

  63. Li X., Liu S., Chandran L.S., Mathew R., Rajendraprasad D.: Rainbow connection number and connectivity. Electron. J. Combin. 19, P20 (2012)

    MathSciNet  Google Scholar 

  64. Li, X., Mao, Y., Shi, Y.: The strong rainbow vertex-connection of graphs. arXiv:1201.1541 [math.CO] (2011)

  65. Li, X., Shi, Y.: On the rainbow vertex-connection. Discuss. Math. Graph Theory (2012) (to appear)

  66. Li, X., Shi, Y.: Rainbow connection in 3-connected graphs. Graphs Combin. (2012) (in press)

  67. Li X., Sun Y.: Rainbow connection numbers of line graphs. Ars Combin. 100, 449–463 (2011)

    MathSciNet  MATH  Google Scholar 

  68. Li X., Sun Y: Upper bounds for the rainbow connection numbers of line graphs. Graphs Combin 28(2), 251–263 (2012)

    Article  MathSciNet  Google Scholar 

  69. Li X., Sun Y.: On the rainbow k-connectivity of complete graphs. Australasian J. Combin. 49, 217–226 (2011)

    MATH  Google Scholar 

  70. Li X., Sun Y.: Note on the rainbow k-connectivity of regular complete bipartite graphs. Ars Combin. 101, 513–518 (2011)

    MathSciNet  MATH  Google Scholar 

  71. Li, X., Sun, Y.: Characterize graphs with rainbow connection number m – 2 and rainbow connection numbers of some graph operations. Preprint (2010)

  72. Li, X., Sun, Y.: On the strong rainbow connection number. Bull. Malays. Math. Sci. Soc. (2012) (in press)

  73. Li X., Sun Y.: Rainbow connection numbers of complementary graphs. Util. Math. 86, 23–31 (2011)

    MathSciNet  MATH  Google Scholar 

  74. Li X., Sun Y.: Rainbow Connections of Graphs, Springer Briefs in Mathematics. Springer, New York (2012)

    Book  Google Scholar 

  75. Mader W.: Ecken vom Grad n in minimalen n-fach zusammenhangenden Graphen. Arch. Math. 23, 219–224 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  76. Nordhaus E.A., Gaddum J.W.: On complementary graphs. Am. Math. Monthly 63, 175–177 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  77. Park J.H., Chwa K.Y.: Recursive circulants and their embeddings among hypercubes. Theoret. Comput. Sci. 244, 35–62 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  78. Rao, A.: An exposition of Bourgain’s 2-source extractor. in: ECCCTR: Electronic Colloquium on Computational Complexity, Technical Reports (2007)

  79. Rotman, J.J.: An Introduction to the Theory of Groups, GTM 148, Springer, Berlin (1994)

  80. Schiermeyer, I.: Rainbow connection in graphs with minimum degree three. IWOCA 2009. In: LNCS, vol. 5874, pp. 432–437 (2009) (also see Discrete Appl. Math. (in press))

  81. Shaltiel, R.: Recent developments in explicit constructions of extractors. Bull. EATCS, 67–95 (2002)

  82. Uchizawa, K., Aoki, T., Ito, T., Suzuki, A., Zhou, X.: On the rainbow connectivity of graphs: complexity and FPT algorithms. In: COCOON 2011, LNCS, vol. 6842, pp. 86–97. Springer, Berlin (2011)

  83. Whitney H.: Congruent graphs and the connectivity of graphs. Am. J. Math. 54, 150–168 (1932)

    Article  MathSciNet  Google Scholar 

  84. Yannakakis M.: The complexity of the partial order dimension problem. SIAM J. Alg. Discrete Methods 3(3), 351–358 (1982)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueliang Li.

Additional information

This study was supported by NSFC No.11071130.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Shi, Y. & Sun, Y. Rainbow Connections of Graphs: A Survey. Graphs and Combinatorics 29, 1–38 (2013). https://doi.org/10.1007/s00373-012-1243-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-012-1243-2

Keywords

Mathematics Subject Classification (2010)