Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Simulations of 20th and 21st century Arctic cloud amount in the global climate models assessed in the IPCC AR4

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Simulations of late 20th and 21st century Arctic cloud amount from 20 global climate models (GCMs) in the Coupled Model Intercomparison Project phase 3 (CMIP3) dataset are synthesized and assessed. Under recent climatic conditions, GCMs realistically simulate the spatial distribution of Arctic clouds, the magnitude of cloudiness during the warmest seasons (summer–autumn), and the prevalence of low clouds as the predominant type. The greatest intermodel spread and most pronounced model error of excessive cloudiness coincides with the coldest seasons (winter–spring) and locations (perennial ice pack, Greenland, and the Canadian Archipelago). Under greenhouse forcing (SRES A1B emissions scenario) the Arctic is expected to become cloudier, especially during autumn and over sea ice, in tandem with cloud decreases in middle latitudes. Projected cloud changes for the late 21st century depend strongly on the simulated modern (late 20th century) annual cycle of Arctic cloud amount: GCMs that correctly simulate more clouds during summer than winter at present also tend to simulate more clouds in the future. The simulated Arctic cloud changes display a tripole structure aloft, with largest increases concentrated at low levels (below 700 hPa) and high levels (above 400 hPa) but little change in the middle troposphere. The changes in cloud radiative forcing suggest that the cloud changes are a positive feedback annually but negative during summer. Of potential explanations for the simulated Arctic cloud response, local evaporation is the leading candidate based on its high correlation with the cloud changes. The polar cloud changes are also significantly correlated with model resolution: GCMs with higher spatial resolution tend to produce larger future cloud increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • ACIA (2005) Arctic climate impact assessment: scientific report. Cambridge University Press, Cambridge, 1042 pp

  • Arctic Climatology Project (2000) Environmental working group arctic meteorology and climate Atlas CD-ROM. In: Fetterer F, Radionov V (eds) National Snow and Ice Data Center, Boulder, CO

  • Beesley JA, Moritz RE (1999) Toward an explanation of the annual cycle of cloudiness over the Arctic Ocean. J Clim 12:395–415. doi:10.1175/1520-0442(1999)012<0395:TAEOTA>2.0.CO;2

    Article  Google Scholar 

  • Bromwich DH, Tzeng R-Y, Parish TR (1994) Simulation of the modern Arctic climate by the NCAR CCM1. J Clim 7:1050–1069. doi:10.1175/1520-0442(1994)007<1050:SOTMAC>2.0.CO;2

    Article  Google Scholar 

  • Chapman WL, Walsh JE (2007) Simulations of Arctic temperature and pressure by global coupled models. J Clim 20:609–632. doi:10.1175/JCLI4026.1

    Article  Google Scholar 

  • Curry JA, Rossow WB, Randall D, Schramm JL (1996) Overview of Arctic cloud and radiation characteristics. J Clim 9:1731–1764. doi:10.1175/1520-0442(1996)009<1731:OOACAR>2.0.CO;2

    Article  Google Scholar 

  • Eisenman I, Untersteiner N, Wettlaufer JS (2007) On the reliability of simulated Arctic sea ice in global climate models. Geophys Res Lett 34:L10501. doi:10.1029/2007GL029914

    Article  Google Scholar 

  • Francis JA, Hunter E (2006) New insight into the disappearing Arctic sea ice. Eos 87:509–524. doi:10.1029/2006EO460001

    Article  Google Scholar 

  • Gorodetskaya IV, Tremblay L-B, Liepert B, Cane MA, Cullather RI (2008) The influence of cloud and surface properties on the Arctic Ocean shortwave radiation budget in coupled models. J Clim 21:866–882. doi:10.1175/2007JCLI1614.1

    Article  Google Scholar 

  • Groves DG, Francis JA (2002) The moisture budget of the Arctic atmosphere from TOVS satellite data. J Geophys Res D19:4391. doi:10.1029/2001JD001191

    Article  Google Scholar 

  • Hahn CJ, Warren SG (2007) A gridded climatology of clouds over land (1971–1996) and ocean (1954–1997) from surface observations worldwide. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN. ORNL/CDIAC-153, NDP-026E

  • Holland MM, Bitz CM (2003) Polar amplification of climate change in the coupled model intercomparison project. Clim Dyn 21:221–232. doi:10.1007/s00382-003-0332-6

    Article  Google Scholar 

  • Huschke RE (1969) Arctic cloud statistics from ‘air-calibrated’ surface weather observations, Memo. RM-6173-PR, Rand Corp, Santa Monica, CA, 79 pp

  • Inoue J, Liu J, Pinto JO, Curry JA (2006) Intercomparison of Arctic regional climate models: modeling clouds and radiation for SHEBA in May 1998. J Clim 19:4167–4178. doi:10.1175/JCLI3854.1

    Article  Google Scholar 

  • Intrieri JM, Fairall CW, Shupe MD, Persson POG, Andreas EL, Guest PS, Moritz RM (2002) An annual cycle of Arctic surface cloud forcing at SHEBA. J Geophys Res 107(C10). doi:10.1029/2000JC000439

  • IPCC (2001) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. WMO/UNEP, Cambridge University Press, Cambridge, 944 pp

  • IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. WMO/UNEP, Cambridge University Press, Cambridge, 996 pp

  • Jones C, Wyser K (2004) The Rossby centre regional atmospheric climate model part II: application to the Arctic climate. Ambio 33:211–220. doi:10.1639/0044-7447(2004)033[0211:TRCRAC]2.0.CO;2

    Google Scholar 

  • Kato S, Loeb NG, Minnis P, Francis JA, Charlock TP, Rutan DA, Clothiaux EE, Sun-Mack S (2006) Seasonal and interannual variations of top-of-atmosphere irradiance and cloud cover over polar regions derived from the CERES data set. Geophys Res Lett 33:L19804. doi:10.1029/2006GL026685

    Article  Google Scholar 

  • Key EL, Minnett PJ, Jones RA (2004) Cloud distributions over the coastal Arctic Ocean: surface-based and satellite observations. Atmos Res 72:57–88. doi:10.1016/j.atmosres.2004.03.029

    Article  Google Scholar 

  • Kutzbach JE, Williams J, Vavrus S (2005) Simulated 21st century changes in regional water balance of the Great Lakes region and links to changes in global temperature and poleward moisture transport. Geophys Res Lett 32. doi:10.1029/2005GL023506

  • Liu Y, Key JR, Francis JA, Wang X (2007) Possible causes of decreasing cloud cover in the Arctic winter, 1982–2000. Geophys Res Lett 34:L14705. doi:10.1029/2007GL030042

    Article  Google Scholar 

  • Lorenz DJ, DeWeaver ET (2007) The response of the extratropical hydrological cycle to global warming. J Clim 20:3470–3484. doi:10.1175/JCLI4192.1

    Article  Google Scholar 

  • Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394. doi:10.1175/BAMS-88-9-1383

    Article  Google Scholar 

  • Miller JR, Russell GL (2002) Projected impact of climate change on the energy budget of the Arctic Ocean by a global climate model. J Clim 15:3028–3042. doi:10.1175/1520-0442(2002)015<3028:PIOCCO>2.0.CO;2

    Article  Google Scholar 

  • Overland JE, Guest PS (1991) The Arctic snow and air temperature budget over sea ice during winter. J Geophys Res 96:4651–4662. doi:10.1029/90JC02264

    Article  Google Scholar 

  • Ramanathan V, Barkstrom BR, Harrison EF (1989) Climate and the Earth’s radiation budget. Phys Today 42:22–32. doi:10.1063/1.881167

    Article  Google Scholar 

  • Randall D, Curry J, Battisti D, Flato G, Grumbine R, Hakkinen S, Martinson D, Preller R, Walsh J, Weatherly J (1998) Status of and outlook for large-scale modeling of atmosphere-ice-ocean interactions in the Arctic. Bull Am Metab Soc 79:197–219. doi:10.1175/1520-0477(1998)079<0197:SOAOFL>2.0.CO;2

    Article  Google Scholar 

  • Schweiger AJ, Key J (1994) Arctic Ocean radiative fluxes and cloud forcing estimated from the ISCCP C2 cloud data set, 1983–1990. J Appl Meteorol 33:948–963. doi:10.1175/1520-0450(1994)033<0948:AORFAC>2.0.CO;2

    Article  Google Scholar 

  • Schweiger AJ, Lindsay RW, Key JR, Francis JA (1999) Arctic clouds in multi-year satellite data sets. Geophys Res Lett 26:1845–1848. doi:10.1029/1999GL900479

    Article  Google Scholar 

  • Schweiger A (2004) Changes in seasonal cloud cover over the Arctic seas from satellite and surface observations. Geophys Res Lett 31:L12207. doi:10.1029/2004GL020067

    Article  Google Scholar 

  • Schweiger A, Lindsay R, Vavrus S, Francis J (2008) On the connection between Arctic sea ice and clouds during autumn. J Clim 21:4799–4810

    Article  Google Scholar 

  • Sorteberg A, Kattsov V, Walsh JE, Pavlova T (2007) The Arctic surface energy budget as simulated with the IPCC AR4 AOGCMs. Clim Dyn 29:131–156. doi:10.1007/s00382-006-0222-9

    Article  Google Scholar 

  • Uppala SM et al (2005) The ERA-40 reanalysis. QJR Meteorol Soc 131:2962–3012. doi:10.1256/qj.04.176

  • Vavrus S (2004) The impact of cloud feedbacks on Arctic climate under greenhouse forcing. J Clim 17:603–615. doi:10.1175/1520-0442(2004)017<0603:TIOCFO>2.0.CO;2

    Article  Google Scholar 

  • Vavrus S (2006) An alternative method to calculate cloud radiative forcing: Implications for quantifying cloud feedbacks. Geophys Res Lett 33:L01805. doi:10.1029/2005GL024723

    Article  Google Scholar 

  • Vavrus S, Waliser D (2008) An improved parameterization for simulating Arctic cloud amount in the CCSM3 climate model. J Clim 21:5673–5687

    Article  Google Scholar 

  • Waliser DE, Li JF, Woods C, Austin R, Bacmeister J, Chern J, Genio AD, Jiang J, Kuang Z, Meng H, Minnis P, Platnick S, Rossow WB, Stephens G, Sun-Mack S, Tao WK, Tompkins A, Walker C, Vane D (2008) Cloud Ice: a climate model challenge with sgns and expectations of progress. J Geophys Res CloudSat Spec Sect (accepted)

  • Walsh JE, Chapman WL (1998) Arctic cloud-radiation-temperature associations in observational data and atmospheric reanalyses. J Clim 11:3030–3045. doi:10.1175/1520-0442(1998)011<3030:ACRTAI>2.0.CO;2

    Article  Google Scholar 

  • Walsh JE, Kattsov VM, Chapman WL, Govorkova V, Pavlova T (2002) Comparison of Arctic climate simulations by coupled and uncoupled models. J Clim 15:1429–1446. doi:10.1175/1520-0442(2002)015<1429:COACSB>2.0.CO;2

    Article  Google Scholar 

  • Walsh JE, Vavrus SJ, Chapman WL (2005) Summary of a workshop on modeling of the Arctic atmosphere. Bull Am Meteorol Soc 86:845–852. doi:10.1175/BAMS-86-6-845

    Article  Google Scholar 

  • Wang X, Key JR (2003) Recent trends in Arctic surface, cloud, and radiation properties from space. Science 299:1725–1728. doi:10.1126/science.1078065

    Article  Google Scholar 

  • Wang X, Key JR (2005) Arctic surface, cloud, and radiation properties based on the AVHRR Polar Pathfinder dataset. Part I: spatial and temporal characteristics. J Clim 18:2558–2574. doi:10.1175/JCLI3438.1

    Article  Google Scholar 

  • Wetherald RT, Manabe S (1986) An investigation of cloud cover change in response to thermal forcing. Clim Change 8:5–24. doi:10.1007/BF00158967

    Article  Google Scholar 

  • Wetherald RT, Manabe S (1988) Cloud feedback processes in a general circulation model. J Atmos Sci 45:1397–1415. doi:10.1175/1520-0469(1988)045<1397:CFPIAG>2.0.CO;2

    Article  Google Scholar 

  • Wilson CA, Mitchell JFB (1987) A doubled CO2 climate sensitivity experiment with a GCM including a simple ocean. J Geophys Res 92:13315–13343. doi:10.1029/JD092iD11p13315

    Article  Google Scholar 

  • Xu K-M, Randall DA (1996) A semiempirical cloudiness parameterization for use in climate models. J Atmos Sci 53:3084–3102. doi:10.1175/1520-0469(1996)053<3084:ASCPFU>2.0.CO;2

    Article  Google Scholar 

  • Yin JH (2005) A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys Res Lett 32:L18701. doi:10.1029/2005GL023684

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Foundation awards OPP-0327664, ARC-0628910, DE-FG02-06ER64297 (Small Grant for Exploratory Research) jointly funded by DOE and NSF as part of the DOE Office of Science SciDAC-2 initiative. The second author was supported by the Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration. Acknowledgment is also given to the modeling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP’s Working Group on Coupled Modelling (WGCM) for their roles in making available the WCRP CMIP3 multi-model dataset. Support of this dataset is provided by the Office of Science, U.S. Department of Energy. The assistance of John Dyreby in the processing of the CMIP3 output was essential for completing this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Vavrus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vavrus, S., Waliser, D., Schweiger, A. et al. Simulations of 20th and 21st century Arctic cloud amount in the global climate models assessed in the IPCC AR4. Clim Dyn 33, 1099–1115 (2009). https://doi.org/10.1007/s00382-008-0475-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-008-0475-6

Keywords