Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Deuterium excess record in a southern Tibetan ice core and its potential climatic implications

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

A 55-m long ice core, drilled close to bedrock from Mt. Noijin Kangsang on the southern Tibetan Plateau in summer 2007, was annually dated covering the period of 1864–2006 AD. The stable isotope ratios (δ 18O and δD) of the ice core were measured and thereby the deuterium excess (d) was calculated by d = δD − 8*δ 18O for the individual ice samples. Results show that the d values of the ice samples were predominantly controlled by the moisture sources. The significant increasing trend of annual mean d values along the ice core is mainly related to the rapid warming of the tropical Indian Ocean, although the tendency is subjected to the modulation by the western-derived moisture. The decreasing Indian monsoon precipitation on the southern Tibetan Plateau, physically linked with the increasing tropical Indian Ocean SST, reduced the share of monsoon precipitation in the annual total accumulation, making an additional contribution to the significant increase of annual mean d in the Noijin Kangsang ice core with high values during the past 143 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allan R, Ansell T (2006) A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J Clim 19(22):5816–5842. doi:10.1175/JCLI3937.1

    Article  Google Scholar 

  • Araguás-Araguás L, Froehlich K, Rozanski K (1998) Stable isotope composition of precipitation over southeast Asia. J Geophys Res 103(D22):28721–28742. doi:10.1029/98jd02582

    Google Scholar 

  • Araguás-Araguás L, Froehlich K, Rozanski K (2000) Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrol Process 14(8):1341–1355

    Article  Google Scholar 

  • Armengaud A, Koster RD, Jouzel J, Ciais P (1998) Deuterium excess in Greenland snow: Analysis with simple and complex models. J Geophys Res 103(D8):8947–8953. doi:10.1029/98jd00274

    Google Scholar 

  • Bolzan JF (1985) Ice flow at the Dome C ice divide based on a deep temperature profile. J Geophys Res 90(D5):8111–8124

    Google Scholar 

  • Cappa CD, Hendricks MB, DePaolo DJ, Cohen RC (2003) Isotopic fractionation of water during evaporation. J Geophys Res 108(D16):4525. doi:10.1029/2003jd003597

    Google Scholar 

  • Charles CD, Rind D, Jouzel J, Koster RD, Fairbanks RG (1994) Glacial-interglacial changes in moisture sources for Greenland: influences on the ice core record of climate. Science 263(5146):508–511. doi:10.1126/science.263.5146.508

    Article  Google Scholar 

  • Chu G, Sun Q, Yang K, Li A, Yu X, Xu T, Yan F, Wang H, Liu M, Wang X, Xie M, Lin Y, Liu Q (2011) Evidence for decreasing South Asian summer monsoon in the past 160 years from varved sediment in Lake Xinluhai, Tibetan Plateau. J Geophys Res 116:D02116. doi:10.1029/2010JD014454

    Article  Google Scholar 

  • Chung CE, Ramanathan V (2006) Weakening of North Indian SST gradients and the monsoon rainfall in India and the Sahel. J Clim 19(10):2036–2045

    Article  Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133(3465):1702–1703. doi:10.1126/science.133.3465.1702

    Article  Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16(4):436–468

    Article  Google Scholar 

  • Dash SK, Kulkarni MA, Mohanty UC, Prasad K (2009) Changes in the characteristics of rain events in India. J Geophys Res 114:D10109. doi:10.1029/2008jd010572

    Article  Google Scholar 

  • Delmotte M, Masson V, Jouzel J, Morgan VI (2000) A seasonal deuterium excess signal at Law Dome, coastal eastern Antarctica: a southern ocean signature. J Geophys Res 105(D6):7187–7197

    Google Scholar 

  • Duan K, Yao T, Thompson LG (2004) Low-frequency of southern Asian monsoon variability using a 295-year record from the Dasuopu ice core in the central Himalayas. Geophys Res Lett 31:L16209. doi:10.1029/2004GL020015

    Article  Google Scholar 

  • Duan K, Yao T, Thompson LG (2006) Response of monsoon precipitation in the Himalayas to global warming. J Geophys Res 111:D19110. doi:10.1029/2006JD007084

    Article  Google Scholar 

  • Fang X, Han Y, Ma J, Song L, Yang S, Zhang X (2004) Dust storms and loess accumulation on the Tibetan Plateau: a case study of dust event on 4 March 2003 in Lhasa. Chin Sci Bull 49(9):953–960. doi:10.1007/BF03184018

    Google Scholar 

  • Froehlich K, Kralik M, Papesch W, Rank D, Scheifinger H, Stichler W (2008) Deuterium excess in precipitation of Alpine regions—moisture recycling. Isot Environ Health Stud 44(1):61–70. doi:10.1080/10256010801887208

    Article  Google Scholar 

  • Gao J, Tian L, Liu Y, Gong T (2009) Oxygen isotope variation in the water cycle of the Yamzho lake Basin in southern Tibetan Plateau. Chin Sci Bull 54(16):2758–2765

    Article  Google Scholar 

  • Gat JR (1996) Oxygen and hydrogen isotopes in the hydrologic cycle. Annu Rev Earth Planet Sci 24:225–262. doi:10.1146/annurev.earth.24.1.225

    Article  Google Scholar 

  • Gat JR, Carmi I (1970) Evolution of the isotopic composition of atmospheric waters in the Mediterranean Sea area. J Geophys Res 75(15):3039–3048. doi:10.1029/JC075i015p03039

    Article  Google Scholar 

  • Gat JR, Klein B, Kushnir Y, Roether W, Wernli H, Yam R, Shemesh A (2003) Isotope composition of air moisture over the Mediterranean Sea: an index of the air–sea interaction pattern. Tellus B 55(5):953–965. doi:10.1034/j.1600-0889.2003.00081.x

    Article  Google Scholar 

  • Gong D-Y, Luterbacher J (2008) Variability of the low-level cross-equatorial jet of the western Indian Ocean since 1660 as derived from coral proxies. Geophys Res Lett 35:L01705. doi:10.1029/2007gl032409

    Article  Google Scholar 

  • Hoffmann G, Jouzel J, Johnsen S (2001) Deuterium excess record from central Greenland over the last millennium: hints of a North Atlantic signal during the Little Ice Age. J Geophys Res 106:14265–14274. doi:10.1029/2000jd900585

    Article  Google Scholar 

  • Hren MT, Bookhagen B, Blisniuk PM, Booth AL, Chamberlain CP (2009) δ 18O and δD of streamwaters across the Himalaya and Tibetan Plateau: Implications for moisture sources and paleoelevation reconstructions. Earth Planet Sci Lett 288(1–2):20–32

    Article  Google Scholar 

  • Jones PD, Jonsson T, Wheeler D (1997) Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int J Climatol 17(13):1433–1450

    Article  Google Scholar 

  • Joswiak DR, Yao T, Wu G, Xu B, Zheng W (2010) A 70-yr record of oxygen-18 variability in an ice core from the Tanggula Mountains, central Tibetan Plateau. Clim Past 6(2):219–227. doi:10.5194/cp-6-219-2010

    Article  Google Scholar 

  • Jouzel J, Stiévenard M, Johnsen SJ, Landais A, Masson-Delmotte V, Sveinbjornsdottir A, Vimeux F, von Grafenstein U, White JWC (2007) The GRIP deuterium-excess record. Quat Sci Rev 26(1–2):1–17. doi:10.1016/j.quascirev.2006.07.015

    Article  Google Scholar 

  • Kang S, Kreutz KJ, Mayewski PA, Qin D, Yao T (2002) Stable-isotopic composition of precipitation over the northern slope of the central Himalaya. J Glaciol 48(163):519–526

    Article  Google Scholar 

  • Kang S, Mayewski PA, Qin D, Sneed SA, Ren J, Zhang D (2004) Seasonal differences in snow chemistry from the vicinity of Mt. Everest, central Himalayas. Atmos Environ 38(18):2819–2829

    Google Scholar 

  • Kang S, Huang J, Xu Y (2008) Changes in ionic concentrations and δ 18O in the snowpack of Zhadang glacier, Nyainqentanglha mountain, southern Tibetan Plateau. Ann Glaciol 49:127–134

    Article  Google Scholar 

  • Kaspari S, Mayewski P, Kang S, Sneed S, Hou S, Hooke R, Kreutz K, Introne D, Handley M, Maasch K, Qin D, Ren J (2007) Reduction in northward incursions of the South Asian monsoon since ~1400 AD inferred from a Mt. Everest ice core. Geophys Res Lett 34(16):L16701. doi:10.1029/2007GL030440

    Google Scholar 

  • Kreutz KJ, Wake CP, Aizen VB, Cecil LD, Synal H-A (2003) Seasonal deuterium excess in a Tien Shan ice core: influence of moisture transport and recycling in Central Asia. Geophys Res Lett 30:1922. doi:10.1029/2003gl017896

    Article  Google Scholar 

  • Lin Z, Wu X (1990) A preliminary analysis about the tracks of moisture transportation on the Qinghai-Xizang Plateau (in Chinese). Geogr Res 9:30–49

    Google Scholar 

  • Liu X, Yin Z-Y (2001) Spatial and temporal variation of summer precipitation over the Eastern Tibetan Plateau and the North Atlantic Oscillation. J Clim 14(13):2896–2909

    Article  Google Scholar 

  • Liu Z, Tian L, Yao T, Yu W (2008) Seasonal deuterium excess in Nagqu precipitation: influence of moisture transport and recycling in the middle of Tibetan Plateau. Environ Geol 55(7):1501–1506. doi:10.1007/s00254-007-1100-4

    Article  Google Scholar 

  • Liu Z, Tian L, Yao T, Yu W (2010) Characterization of precipitation δ 18O variation in Nagqu, central Tibetan Plateau and its climatic controls. Theor Appl Climatol 99(1):95–104. doi:10.1007/s00704-009-0125-x

    Article  Google Scholar 

  • Merlivat L, Jouzel J (1979) Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation. J Geophys Res 84(C8):5029–5033. doi:10.1029/JC084iC08p05029

    Google Scholar 

  • Ming J, Cachier H, Xiao C, Qin D, Kang S, Hou S, Xu J (2008) Black carbon record based on a shallow Himalayan ice core and its climatic implications. Atmos Chem Phys 8(5):1343–1352. doi:10.5194/acp-8-1343-2008

    Article  Google Scholar 

  • Moran T, Marshall S (2009) The effects of meltwater percolation on the seasonal isotopic signals in an Arctic snowpack. J Glaciol 55:1012–1024. doi:10.3189/002214309790794896

    Article  Google Scholar 

  • Naidu CV, Durgalakshmi K, Krishna KM, Rao RS, Satyanarayana GC, Lakshminarayana P, Rao LM (2009) Is summer monsoon rainfall decreasing over India in the global warming era? J Geophys Res 114:D24108. doi:10.1029/2008JD011288

    Article  Google Scholar 

  • Pang H, He Y, Theakstone WH, Zhang DD (2007) Soluble ionic and oxygen isotopic compositions of a shallow firn profile, Baishui glacier No. 1, southeastern Tibetan Plateau. Ann Glaciol 46:325–330

    Article  Google Scholar 

  • Petit JR, White JWC, Young NW, Jouzel J, Korotkevich YS (1991) Deuterium excess in recent Antarctic snow. J Geophys Res 96(D3):5113–5122. doi:10.1029/90jd02232

    Google Scholar 

  • Reeh N (1988) A flow-line model for calculating the surface profile and the velocity, strain-rate, and stress fields in an ice sheet. J Glaciol 34(116):46–54

    Google Scholar 

  • Risi C, Bony S, Vimeux F (2008) Influence of convective processes on the isotopic composition (δ 18O and δD) of precipitation and water vapor in the tropics: 2. Physical interpretation of the amount effect. J Geophys Res 113:D19306. doi:10.1029/2008JD009943

  • Rossby C-G (1939) Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. J Mar Res 2:38–55

    Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J Clim 21(10):2283–2296. doi:10.1175/2007JCLI2100.1

    Article  Google Scholar 

  • Sontakke NA, Singh N, Singh HN (2008) Instrumental period rainfall series of the Indian region (AD 1813–2005): revised reconstruction, update and analysis. Holocene 18(7):1055–1066

    Article  Google Scholar 

  • Stenni B, Genoni L, Flora O, Guglielmin M (2007) An oxygen isotope record from the Foscagno rock-glacier ice core, Upper Valtellina, Italian Central Alps. Holocene 17(7):1033–1039

    Article  Google Scholar 

  • Takeuchi N, Miyake T, Nakazawa F, Narita H, Fujita K, Sakai A, Nakawo M, Fujii Y, Duan K, Yao T (2009) A shallow ice core re-drilled on the Dunde Ice Cap, western China: recent changes in the Asian high mountains. Environ Res Lett 4(4):045207. doi:10.1088/1748-9326/4/4/045207

    Google Scholar 

  • Thomas ER, Dennis PF, Bracegirdle TJ, Franzke C (2009) Ice core evidence for significant 100-year regional warming on the Antarctic Peninsula. Geophys Res Lett 36:L20704. doi:10.1029/2009gl040104

    Article  Google Scholar 

  • Thompson LG, Mosley-Thompson E, Davis ME, Bolzan JF, Dai J, Klein L, Yao T, Wu X, Xie Z, Gundestrup N (1989) Holocene–Late Pleistocene climatic ice core records from Qinghai-Tibetan Plateau. Science 246(4929):474–477. doi:10.1126/science.246.4929.474

    Article  Google Scholar 

  • Thompson LG, Yao T, Mosley-Thompson E, Davis ME, Henderson KA, Lin PN (2000) A high-resolution millennial record of the South Asian Monsoon from Himalayan ice cores. Science 289(5486):1916–1919. doi:10.1126/science.289.5486.1916

    Article  Google Scholar 

  • Thompson LG, Mosley-Thompson E, Davis ME, Henderson KA, Brecher HH, Zagorodnov VS, Mashiotta TA, Lin P-N, Mikhalenko VN, Hardy DR, Beer J (2002) Kilimanjaro ice core records: evidence of Holocene climate change in tropical Africa. Science 298(5593):589–593. doi:10.1126/science.1073198

    Article  Google Scholar 

  • Tian L, Masson-Delmotte V, Stievenard M, Yao T, Jouzel J (2001a) Tibetan Plateau summer monsoon northward extent revealed by measurements of water stable isotopes. J Geophys Res 106(D22):28081–28088. doi:10.1029/2001jd900186

    Google Scholar 

  • Tian L, Yao T, Sun W, Stievenard M, Jouzel J (2001b) Relationship between δD and δ 18O in precipitation on north and south of the Tibetan Plateau and moisture recycling. Sci China Ser D-Earth Sci 44(9):789–796

    Article  Google Scholar 

  • Tian L, Yao T, Schuster PF, White JWC, Ichiyanagi K, Pendall E, Pu J, Yu W (2003) Oxygen-18 concentrations in recent precipitation and ice cores on the Tibetan Plateau. J Geophys Res 108(D9):4293. doi:10.1029/2002JD002173

    Google Scholar 

  • Tian L, Yao T, MacClune K, White JWC, Schilla A, Vaughn B, Vachon R, Ichiyanagi K (2007) Stable isotopic variations in west China: a consideration of moisture sources. J Geophys Res 112:D10112. doi:10.1029/2006jd007718

    Article  Google Scholar 

  • Tian L, Liu Z, Gong T, Yin C, Yu W, Yao T (2008) Isotopic variation in the lake water balance at the Yamdruk-tso basin, southern Tibetan Plateau. Hydrol Process 22(17):3386–3392

    Article  Google Scholar 

  • Ueda H, Iwai A, Kuwako K, Hori ME (2006) Impact of anthropogenic forcing on the Asian summer monsoon as simulated by eight GCMs. Geophys Res Lett 33:L06703. doi:10.1029/2005GL025336

    Article  Google Scholar 

  • Uemura R, Matsui Y, Yoshimura K, Motoyama H, Yoshida N (2008) Evidence of deuterium excess in water vapor as an indicator of ocean surface conditions. J Geophys Res 113:D19114. doi:10.1029/2008jd010209

    Article  Google Scholar 

  • Vimeux F, Masson V, Jouzel J, Stievenard M, Petit JR (1999) Glacial–interglacial changes in ocean surface conditions in the Southern Hemisphere. Nature 398:410–413. doi:10.1038/18860

    Article  Google Scholar 

  • Vimeux F, Masson V, Jouzel J, Petit JR, Steig EJ, Stievenard M, Vaikmae R, White JWC (2001) Holocene hydrological cycle changes in the Southern Hemisphere documented in East Antarctic deuterium excess records. Clim Dyn 17(7):503–513. doi:10.1007/PL00007928

    Article  Google Scholar 

  • Vimeux F, Cuffey KM, Jouzel J (2002) New insights into Southern Hemisphere temperature changes from Vostok ice cores using deuterium excess correction. Earth Planet Sci Lett 203(3–4):829–843

    Article  Google Scholar 

  • Vuille M, Werner M, Bradley RS, Keimig F (2005) Stable isotopes in precipitation in the Asian monsoon region. J Geophys Res 110:D23108. doi:10.1029/2005JD006022

    Article  Google Scholar 

  • Wake CP, Mayewski PA, Xie ZC, Wang P, Li ZQ (1993) Regional distribution of monsoon and desert dust signals recorded in Asian glaciers. Geophys Res Lett 20(14):1411–1414

    Article  Google Scholar 

  • Wang N, Yao T, Thompson LG, Davis ME (2002) Indian monsoon and North Atlantic Oscillation signals reflected by Cl and Na+ in a shallow ice core from Dasuopu glacier, Xixabangma, Himalaya. Ann Glaciol 35(1):273–277

    Article  Google Scholar 

  • Wang N, Thompson LG, Davis ME, Mosley-Thompson E, Yao T, Pu J (2003) Influence of variations in NAO and SO on air temperature over the northern Tibetan Plateau as recorded by δ 18O in the Malan ice core. Geophys Res Lett 30(22):2167. doi:10.1029/2003GL018188

    Google Scholar 

  • Wang N, Jiang X, Thompson LG, Davis ME (2007) Accumulation rates over the past 500 years recorded in ice cores from the northern and southern Tibetan Plateau, China. Arct Antarct Alp Res 39(4):671–677. doi:10.1657/1523-0430(07-507)[wang]2.0.co;2

    Article  Google Scholar 

  • Xu BQ, Wang M, Joswiak DR, Cao JJ, Yao TD, Wu GJ, Yang W, Zhao HB (2009a) Deposition of anthropogenic aerosols in a southeastern Tibetan glacier. J Geophys Res 114:D17209. doi:10.1029/2008JD011510

    Article  Google Scholar 

  • Xu BQ, Cao JJ, Hansen J, Yao TD, Joswia DR, Wang NL, Wu GJ, Wang M, Zhao HB, Yang W, Liu XQ, He JQ (2009b) Black soot and the survival of Tibetan glaciers. Proc Natl Acad Sci USA 106(52):22114–22118. doi:10.1073/pnas.0910444106

    Article  Google Scholar 

  • Yao TD, Shi YF, Thompson LG (1997) High resolution record of paleoclimate since the Little Ice Age from the Tibetan ice cores. Quat Int 37:19–23. doi:10.1016/1040-6182(96)00006-7

    Article  Google Scholar 

  • Yu W, Yao T, Tian L, Ma Y, Kurita N, Ichiyanagi K, Wang Y, Sun W (2007) Stable isotope variations in precipitation and moisture trajectories on the western Tibetan Plateau, China. Arct Antarct Alp Res 39(4):688–693. doi:10.1657/1523-0430(07-511)[yu]2.0.co;2

    Article  Google Scholar 

Download references

Acknowledgments

This research was jointly supported by the External Cooperation Program of the Chinese Academy of Sciences (grant GJHZ0960), the CAS/SAFEA International Partnership Program for Creative Research Teams (grant KZCX2-YW-T11), the National Basic Research Program of China (grant 2009CB723901), the National Natural Science Foundation of China (grant 41001035), and China Postdoctoral Science Foundation (grant 20090460541). NOAA_ERSST_V3 data and HadSLP2 data are provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at http://www.esrl.noaa.gov/psd/. We thank the two anonymous reviewers for their helpful suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huabiao Zhao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 766 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, H., Xu, B., Yao, T. et al. Deuterium excess record in a southern Tibetan ice core and its potential climatic implications. Clim Dyn 38, 1791–1803 (2012). https://doi.org/10.1007/s00382-011-1161-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-011-1161-7

Keywords