Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Bivariate drought frequency analysis using the copula method

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Droughts are major natural hazards with significant environmental and economic impacts. In this study, two-dimensional copulas were applied to the analysis of the meteorological drought characteristics of the Sharafkhaneh gauge station, located in the northwest of Iran. Two major drought characteristics, duration and severity, as defined by the standardized precipitation index, were abstracted from observed drought events. Since drought duration and severity exhibited a significant correlation and since they were modeled using different distributions, copulas were used to construct the joint distribution function of the drought characteristics. The parameter of copulas was estimated using the method of the Inference Function for Margins. Several copulas were tested in order to determine the best data fit. According to the error analysis and the tail dependence coefficient, the Galambos copula provided the best fit for the observed drought data. Some bivariate probabilistic properties of droughts, based on the derived copula-based joint distribution, were also investigated. These probabilistic properties can provide useful information for water resource planning and management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abdous B, Genest C, Rémillard B (2004) Dependence properties of meta-elliptical distributions. In: Duchesne P, Rémillard B (eds) Statistical modeling and analysis for complex data problems. Kluwer, Dordrecht, pp 1–15

    Google Scholar 

  • AghaKouchak A, Bardossy A, Habib E (2010) Conditional simulation of remotely sensed rainfall fields using a non-Gaussian v-transformed copula. Adv Water Resour 33(6):624–634. doi:10.1016/j.advwatres.2010.02.010

    Article  Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control AC 19(6):716–723

    Article  Google Scholar 

  • Bardossy A (2006) Copula-based geostatistical models for groundwater quality parameters. Water Resour Res 42:W11416. doi:10.1029/2005WR004754

    Article  Google Scholar 

  • Bardossy A, Li J (2008) Geostatistical interpolation using copulas. Water Resour Res 44(7):W07412. doi:10.1029/2007WR006115

    Article  Google Scholar 

  • Cancelliere A, Salas JD (2004) Drought length properties for periodic-stochastic hydrologic data. Water Resour Res 40:W02503. doi:10.1029/2002WR001750

    Article  Google Scholar 

  • Capéraà P, Fougères A-L, Genest C (1997) A nonparametric estimation procedure for bivariate extreme value copulas. Biometrika 84(3):567–577

    Article  Google Scholar 

  • Capéraà P, Fougères A-L, Genest C (2000) Bivariate distributions with given extreme value attractor. J Multivariate Anal 72:30–49

    Article  Google Scholar 

  • Coles SG, Heffernan JE, Tawn JA (1999) Dependence measures for extreme value analyses. Extremes 2:339–365

    Article  Google Scholar 

  • De Michele C, Salvadori G (2003) A generalized Pareto intensity-duration model of storm rainfall exploiting 2-copulas. J Geophys Res Atmos 108:4067. doi:10.1029/2002JD002534

    Article  Google Scholar 

  • Dracup JA, Lee KS, Paulson EG Jr (1980) On the definition of droughts. Water Resour Res 16(2):297–302. doi:10.1029/WR016i002p00297

    Article  Google Scholar 

  • Durante F, Salvadori G (2010) On the construction of multivariate extreme value models via copulas. Environmetrics 21:143–161

    Google Scholar 

  • Edwards D, McKee T (1997) Characteristics of 20th century drought in the United States at multiple time scales. Climatology report number 972. Technical report, Colorado State University, Fort Collins, USA

  • Eimanifar A, Mohebbi F (2007) Urmia Lake (Northwest Iran): a brief review. Saline Syst 3(5):1–8. doi:10.1186/1746-1448-3-5

    Google Scholar 

  • Fang H-B, Fang K-T, Kotz S (2002) The meta-elliptical distributions with given marginals. J Multivariate Anal 82:1–16

    Article  Google Scholar 

  • Favre AC, El Adlouni S, Perreault L, Thiémonge N, Bobée B (2004) Multivariate hydrological frequency analysis using copulas. Water Resour Res 40:W01101. doi:10.1029/2003WR002456

    Article  Google Scholar 

  • Fernández B, Salas JD (1999) Return period and risk of hydrologic events. I: mathematical formulations. J Hydrol Eng 4(4):297–307

    Article  Google Scholar 

  • Frahm G, Junker M, Schmidt R (2005) Estimating the tail-dependence coefficient: properties and pitfalls. Insur Math Econ 37(1):80–100

    Article  Google Scholar 

  • Gebremichael M, Krajewski WF (2007) Application of copulas to modeling temporal sampling errors in satellite-derived rainfall estimates. J Hydrol Eng 12(4):404–408

    Article  Google Scholar 

  • Genest C, Favre AC (2007) Everything you always wanted to know about copula modeling but were afraid to ask. J Hydrol Eng 12(4):347–368

    Article  Google Scholar 

  • Genest C, Ghoudi K, Rivest L-P (1995) A semiparametric estimation procedure of dependence parameters in multivariate families of distribution. Biometrika 82(3):543–552. doi:10.1093/biomet/82.3.543

    Article  Google Scholar 

  • Genest C, Rémillard B, Beaudoin D (2009) Goodness-of-fit tests for copulas: a review and a power study. Insur Math Econ 44:199–213

    Article  Google Scholar 

  • Genest C, Rivest L-P (1993) Statistical inference procedures for bivariate archimedean copulas. J Am Stat Assoc 88:1034–1043

    Article  Google Scholar 

  • Ghosh S (2010) Modelling bivariate rainfall distribution and generating bivariate correlated rainfall data in neighbouring meteorological subdivisions using copula. Hydrol Process 24:3558–3567. doi:10.1002/hyp.7785

    Article  Google Scholar 

  • Ghoudi K, Khoudraji A, Rivest L-P (1998) Propriétés statistiques des copules de valeurs extrêmes bidimensionnelles. Can J Stat 26:187–197

    Article  Google Scholar 

  • Grimaldi S, Serinaldi F (2006a) Asymmetric copula in multivariate flood frequency analysis. Adv Water Resour 29(8):1115–1167. doi:10.1016/j.advwatres.2005.09.005

    Article  Google Scholar 

  • Grimaldi S, Serinaldi F (2006b) Design hyetograph analysis with 3-copula function. Hydrol Sci J 51(2):223–238. doi:10.1623/hysj.51.2.223

    Article  Google Scholar 

  • Hayes MJ, Svoboda MD, Wilhite DA, Vanyarkho OV (1999) Monitoring the 1996 drought using the standardized precipitation index. Bull Am Met Soc 80(3):429–438

    Article  Google Scholar 

  • Joe H (1997) Multivariate models and dependence concepts. Chapman and Hall, New York

    Google Scholar 

  • Kao SC, Govindaraju RS (2007) Probabilistic structure of storm surface runoff considering the dependence between average intensity and storm duration of rainfall events. Water Resour Res 43:W06410. doi:10.1029/2006WR005564

    Article  Google Scholar 

  • Kao SC, Govindaraju RS (2010) A copula-based joint deficit index for droughts. J Hydrol 380:121–134. doi:10.1016/j.jhydrol.2009.10.029

    Article  Google Scholar 

  • Kao SC, Govindaraju RS, Niyogi D (2009) A spatio-temporal drought analysis for the midwestern US. In: Proceedings of World Environmental and Water Resources Congress, Great Rivers, 4654–4663

  • Kim TW, Valdés JB, Yoo C (2003) Nonparametric approach for estimating return periods of droughts in arid regions. J Hydrol Eng 8(5):237–246

    Article  Google Scholar 

  • Loukas A, Vasiliades L (2004) Probabilistic analysis of drought spatiotemporal characteristics in Thessaly region, Greece. Nat Hazards Earth Syst Sci 4:719–731

    Article  Google Scholar 

  • Mathier L, Perreault L, Bobe B, Ashkar F (1992) The use of geometric and gamma-related distributions for frequency analysis of water deficit. Stoch Hydrol Hydraul 6(4):239–254

    Article  Google Scholar 

  • McKee TB, Doeskin NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: Proceedings of the 8th conference on applied climatology, 17–22 January, Anaheim, CA, Am Meteor Soc, pp 179–184

  • Mirakbari M, Ganji A, Fallah SR (2010) Regional bivariate frequency analysis of meteorological droughts. J Hydrol Eng 15(12):985–1000. doi:10.1061/(ASCE)HE.1943-5584.0000271

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models. 1. A discussion of principles. J Hydrol 10:282–290. doi:10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  • Nelsen RB (2006) An introduction to copulas. Springer, New York

    Google Scholar 

  • Poulin A, Huard D, Favre A, Pugin S (2007) Importance of tail dependence in bivariate frequency analysis. J Hydrol Eng 12(4):394–403

    Article  Google Scholar 

  • Raziei T, Saghafian B, Paulo AA, Pereira LS, Bordi I (2009) Spatial patterns and temporal variability of drought in western Iran. Water Resour Manag 23:439–455. doi:10.1007/s11269-008-9282-4

    Article  Google Scholar 

  • Rossi G, Benedini M, Tsakiris G, Giakoumakis S (1992) On regional drought estimation and analysis. Water Resour Manag 6(4):249–277. doi:10.1007/BF00872280

    Article  Google Scholar 

  • Salvadori G, De Michele C (2010) Multivariate multiparameter extreme value models and return periods: a copula approach. Water Resour Res 46:W10501. doi:10.1029/2009WR009040

    Article  Google Scholar 

  • Salvadori G, De Michele C, Durante F (2011) Multivariate design via copulas. Hydrol Earth Syst Sci Discuss 8:5523–5558. doi:10.5194/hessd-8-5523-2011

    Article  Google Scholar 

  • Salvadori G, De Michele C, Kottegoda NT, Rosso R (2007) Extremes in nature. An approach using copulas. Springer, Dordrecht

    Google Scholar 

  • Serinaldi F (2008) Analysis of inter-gauge dependence by Kendall’s τK, upper tail dependence coefficient, and 2-copulas with application to rainfall fields. Stoch Environ Res Risk Assess 22:671–688. doi:10.1007/s00477-007-0176-4

    Article  Google Scholar 

  • Serinaldi F, Bonaccoroso B, Cancelliere A, Grimaldi S (2009) Probabilistic characterization of drought properties through copulas. Phys Chem Earth Parts A/B/C 34(10–12):596–605

    Article  Google Scholar 

  • Shiau JT (2006) Fitting drought duration and severity with two-dimensional copulas. Water Resour Manag 20:795–815. doi:10.1007/s11269-005-9008-9

    Article  Google Scholar 

  • Shiau JT, Feng S, Nadarajah S (2007) Assessment of hydrological droughts for the Yellow River, China, using copulas. Hydrol Process 21:2157–2163

    Article  Google Scholar 

  • Shiau JT, Modarres R (2009) Copula-based drought severity-duration-frequency analysis in Iran. J Appl Meteorol 16(4):481–489. doi:10.1002/met.145

    Article  Google Scholar 

  • Shiau JT, Shen HW (2001) Recurrence analysis of hydrologic droughts of differing severity. J Water Resour Plan Manag 127(1):30–40

    Article  Google Scholar 

  • Shiau JT, Wang HY, Tsai CT (2006) Bivariate frequency analysis of floods using copulas. J Am Water Resour Assoc 42:1549–1564

    Article  Google Scholar 

  • Sibuya M (1960) Bivariate extreme statistics. Ann Inst Stat Math 11:195–210

    Article  Google Scholar 

  • Singh VP, Zhang L (2007) IDF curves using the Frank Achimedean copula. J Hydrol Eng 12(6):651–662

    Article  Google Scholar 

  • Sklar A (1959) Fonctions de répartition à n dimensions et leurs marges. Publ Inst Statist Univ Paris 8:229–231

    Google Scholar 

  • Song S, Singh VP (2010a) Frequency analysis of droughts using the Plackett copula and parameter estimation by genetic algorithm. Stoch Environ Res Risk Assess 24:783–805. doi:10.1007/s00477-010-0364-5

    Article  Google Scholar 

  • Song S, Singh VP (2010b) Meta-elliptical copulas for drought frequency analysis of periodic hydrologic data. Stoch Environ Res Risk Assess 24:425–444. doi:10.1007/s00477-009-0331-1

    Article  Google Scholar 

  • Wong G, Lambert MF, Metcalfe AV (2008) Trivariate copulas for characterization of droughts. ANZIAM J 49:306–323

    Google Scholar 

  • Wong G, Lambert MF, Leonard M, Metcalfe AV (2010) Drought analysis using trivariate copulas conditional on climatic states. J Hydrol Eng 15(2):129–141

    Article  Google Scholar 

  • Xu Y-P, Booij MJ, Tong Y-B (2010) Uncertainty analysis in statistical modeling of extreme hydrological events. Stoch Environ Res Risk Assess 24:567–578. doi:10.1007/s00477-009-0337-8

    Article  Google Scholar 

  • Yevjevich V (1967) An objective approach to definitions and investigations of continental hydrologic drought. Hydrol paper 23. Colorado State University Fort Collins, USA

    Google Scholar 

  • Zhang L, Singh VP (2006) Bivariate flood frequency analysis using the copula method. J Hydrol Eng 11(2):150–164

    Article  Google Scholar 

  • Zhang L, Singh VP (2007) Gumbel-Hougaard copula for trivariate rainfall frequency analysis. J Hydrol Eng 12(4):409–419

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasoul Mirabbasi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirabbasi, R., Fakheri-Fard, A. & Dinpashoh, Y. Bivariate drought frequency analysis using the copula method. Theor Appl Climatol 108, 191–206 (2012). https://doi.org/10.1007/s00704-011-0524-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-011-0524-7

Keywords