Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Efficient steganalysis of images: learning is good for anticipation

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

This paper describes a Bayesian formalism for digital image steganalysis allowing the detection of stego images, the identification of the steganographic algorithm used, the estimation of message length and location, and anticipation in the case of embedding using an unknown steganographic algorithm. A Bayesian multinomial logistic regression based on a variational approximation is proposed. Detection, identification, and anticipation involve discriminative learning in feature space. Estimation requires the fusion of classifiers allowing discrimination between fully embedded and cover subimages of different sizes. The validation on JPEG images shows that the proposed scheme is effective and allows the anticipation of unknown steganographic algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Avcibas I, Kharrazi M, Memon N, Sankur B (2005) Image steganalysis with binary similarity measures. EURASIP J Appl Signal Process 17:2749–2757

    Article  Google Scholar 

  2. Begg CB, Gray R (1984) Calculation of polychotomous logistic regression parameters using individualized regressions. Biometrika 71(1):11–18

    Article  MATH  MathSciNet  Google Scholar 

  3. Bouguila N, Ziou D (2010) A Dirichlet process mixture of generalized Dirichlet distributions for proportional data modeling. IEEE Trans Neural Netw 21(1):107–122

    Article  Google Scholar 

  4. BPCS-Steganography Software. http://www.datahide.com/BPCSe/

  5. Chandramouli R., Memon N.D. (2003) Steganography capacity: a steganalysis perspective. Tech. report, Stevens Institute of Technology

  6. de Souza RMCR, Queiroz DCF, Cysneiros FJA (2011) Logistic regression-based pattern classifiers for symbolic interval data. Pattern Anal Appl 14(3):273–282

    Article  MathSciNet  Google Scholar 

  7. Fu D, Shi YQ, Zou D, Xuan G (2006) JPEG steganalysis using empirical transition matrix in block DCT domain. In: International workshop on multimedia signal processing, pp 310–313

  8. Farid H (2002) Detecting hidden messages using higher-order statistical models. In: International conference on image processing, pp 905–908

  9. Fridrich J, Goljan M, Hogea D, Soukal D (2003) Quantitative steganalysis of digital images: estimating the secret message length. Multimedia Syst 9(3):288–302

    Article  Google Scholar 

  10. Hecht S (1924) The visual discrimination of intensity and the Weber–Fechner Law. J Gen Physiol 7:235–267

    Article  Google Scholar 

  11. Jeremiah J, Harmsen A, William A, Pearlman A (2004) Kernel Fisher discriminant for steganalysis of JPEG hiding methods. SPIE pp 13–22

  12. Ng A, Jordan M (2002) On discriminative vs. generative classifiers: a comparison of logistic regression and naive Bayes. Neural Inf Process Syst 14:841–848

    Google Scholar 

  13. Julesz B (1962) Visual pattern discrimination. IRE Trans Inf Theory 8:84–92

    Article  Google Scholar 

  14. Kawaguchi E, Eason RO (1999) Principle and applications of BPCS- Steganography. SPIE, pp 464–473

  15. Ker AD (2004) Improved detection of LSB steganography in grayscale images. In: International workshop on information hiding, pp 97–115

  16. Kharrazi M. (2003) Image steganography and steganalysis. In: International workshop on digital watermarking, pp 35–49

  17. Krishnapuram B, Carin L, Figueiredo MAT, Hartemink AJ (2005) Sparse multinomial logistic regression: fast algorithms and generalization bounds. IEEE Trans Pattern Anal Mach Intell 27(6):957–968

    Article  Google Scholar 

  18. Ksantini R, Ziou D, Colin B, Dubeau F (2008) A weighted pseudo-metric discriminatory power improvement using a variational method based bayesian logistic regression model. IEEE Trans Pattern Anal Mach Intell 30(2):256–266

    Google Scholar 

  19. Lie WN, Lin GS (2005) A feature-based classification technique for blind image steganalysis. IEEE Trans Multimed 7(6):1007–1019

    Article  Google Scholar 

  20. Liu Q, Sung AH, Qiao M, Chen Z, Ribeiro B (2010) An improved approach to steganalysis of JPEG images. Inf Sci 180(9):16431655

    Article  Google Scholar 

  21. Mariolis IG, Dermatas ES (2012) Automatic classification of seam pucker images based on ordinal quality grades. Pattern Anal Appl (to appear)

  22. Ming C, Ru Z, Xinxin N, Yixian Y (2006) Analysis of current steganography tools: classification and features. In: International conference on intelligent information hiding and multimedia signal processing, pp 384–387

  23. Outguess Steganography Software. http://www.outguess.org

  24. Pevny T, Fridrich J (2008) Novelty detection in blind steganalysis. ACM workshop on multimedia and security, pp 167–176

  25. Pevny T, Fridrich J (2008) Multiclass detector of current steganographic methods for JPEG format. IEEE Trans Inf Forens Secur 3(4):635–650

    Article  Google Scholar 

  26. Greenspun’s photography database. http://philip.greenspun.com

  27. Provos N (2001) Probabilistic method for improving information hiding. CITI Technical Report 01-1, Univ. Michigan

  28. Terrades O, Valveny E, Tabbone S (2009) Optimal Classifier Fusion in a Non-Bayesian Probabilistic Framework. IEEE Trans Pattern Anal Mach Intell 31(9):1630–1644

    Article  Google Scholar 

  29. Salee P (2004) Model based steganography. In: International workshop on digital watermarking, pp 254–260

  30. http://www.sarc-wv.com

  31. Simmons G (1984) The prisoners problem and the subliminal channel. In: Advances in Cryptology, pp 51–67

  32. Wang Y, Moulin P (2007) Optimized feature extraction for learning-based image steganalysis. IEEE Trans Inf Forens Secur 2(1):31–45

    Article  Google Scholar 

  33. Wang H, Wang S (2004) Cyber warfare: steganography vs. steganalysis. Commun ACM 47(10):76–82

    Article  Google Scholar 

  34. Westfeld A, Pfitzmann A (2000) Attacks on steganographic systems. In: International workshop on information hiding, pp 61–75

  35. Westfeld A (2001) F5 a steganographic algorithm: high capacity despite better steganalysis. In: International workshop on information hiding, pp 289–302

  36. Wilson PC, Irwin GW, Lamont JV, Harrison RF (2009) Probabilistic classification of acute myocardial infarction from multiple cardiac markers. Pattern Anal Appl 12(4):321–333

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The completion of this research was made possible thanks to the Natural Sciences and Engineering Research Council of Canada (NSERC) and Bell Canada. This work is dedicated to the memory of the late Zahir Menadi who helped in the early stages.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djemel Ziou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziou, D., Jafari, R. Efficient steganalysis of images: learning is good for anticipation. Pattern Anal Applic 17, 279–289 (2014). https://doi.org/10.1007/s10044-012-0303-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-012-0303-9

Keywords