Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

A review of retinal blood vessels extraction techniques: challenges, taxonomy, and future trends

  • Survey
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

The visual exploration of retinal blood vessels assists ophthalmologists in the diagnoses of different abnormalities of the eyes such as diabetic retinopathy, glaucoma, cardiovascular ailment, high blood pressure, arteriosclerosis, and age-related macular degeneration. The manual inspection of retinal vasculature is an extremely challenging and tedious task for medical experts due to the complex structure of an eye, tiny blood vessels, and variation in vessels width. Several automatic retinal vessels extraction techniques have been proposed in contemporary literature, which assist ophthalmologists in the timely identification of an eye disorders. However, due to the fast evolution of such techniques, a comprehensive survey is needed. This survey presents a comprehensive review of such techniques, strategies, and algorithms presented to date. The techniques are classified into logical groups based on the underlying methodology employed for retinal vessel extraction. The performance of existing techniques is reported on the publicly accessible datasets in term of various performance measures, providing a valuable comparison among the techniques. Thus, this survey presents a valuable resource for researchers working toward automatic extraction of retinal vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cheng E, Du L, Wu Y, Zhu Y, Megalooikonomou V, Ling H (2014) Discriminative vessel segmentation in retinal images by fusing context-aware hybrid features. Mach Vis Appl 25(7):1779–1792

    Google Scholar 

  2. Abràmoff M, Garvin M, Sonka M (2010) Retinal imaging and image analysis. IEEE Rev Biomed Eng 3:169–208

    Google Scholar 

  3. Jelinek H, Cree M (2009) Automated image detection of retinal pathology. CRC Press, Boca Raton

    Google Scholar 

  4. Patton N, Aslam T, MacGillivray T, Deary I, Dhillon B, Eikelboom R, Yogesan K, Constable I (2006) Retinal image analysis: concepts, applications and potential. Prog Retin Eye Res 25(1):99–127

    Google Scholar 

  5. Franklin S, Rajan S (2014) Computerized screening of diabetic retinopathy employing blood vessel segmentation in retinal images. Biocybern Biomed Eng 34(2):117–124

    Google Scholar 

  6. Fraz M, Remagnino P, Hoppe A, Uyyanonvara B, Rudnicka A, Owen C, Barman S (2012) Blood vessel segmentation methodologies in retinal images—a survey. Comput Methods Programs Biomed 108(1):407–433

    Google Scholar 

  7. Jusoh F, Haron H, Ibrahim R, Azemin M (2016) An overview of retinal blood vessels segmentation. Advanced computer and communication engineering technology. Springer, Berlin, pp 63–71

    Google Scholar 

  8. GeethaRamani R, Balasubramanian L (2016) Retinal blood vessel segmentation employing image processing and data mining techniques for computerized retinal image analysis. Biocybern Biomed Eng 36(1):102–118

    Google Scholar 

  9. Garhöfer G, Vilser W (2012) Measurement of retinal vessel diameters. Ocular blood flow. Springer, Berlin, pp 101–122

    Google Scholar 

  10. Niemeijer M, Staal J, Ginneken BV, Loog M, Abramoff M (2004) Comparative study of retinal vessel segmentation methods on a new publicly available database. In: Medical imaging. International society for optics and photonics, pp 648–656

  11. Dai P, Luo H, Sheng H, Zhao Y, Li L, Wu J, Zhao Y, Suzuki K (2015) A new approach to segment both main and peripheral retinal vessels based on gray-voting and Gaussian mixture model. PLoS ONE 10(6):e0127748

    Google Scholar 

  12. Mabrouk M, Solouma N, Kadah Y (2006) Survey of retinal image segmentation and registration. GVIP J 6(2):1–11

    Google Scholar 

  13. Winder R, Morrow P, McRitchie I, Bailie J, Hart P (2009) Algorithms for digital image processing in diabetic retinopathy. Comput Med Imaging Graph 33(8):608–622

    Google Scholar 

  14. Faust O, Acharya R, Ng E, Ng K, Suri J (2012) Algorithms for the automated detection of diabetic retinopathy using digital fundus images: a review. J Med Syst 36(1):145–157

    Google Scholar 

  15. W H Organization (2016) Global report on diabetes. In: WHO Library Cataloguing-in-Publication Data. http://apps.who.int/iris/bitstream/10665/204871/1/9789241565257_eng.pdf

  16. Alberti K, Zimmet P (1998) Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus, Provisional report of a WHO consultation. Diabet Med 15(7):539–553

    Google Scholar 

  17. Reaven G (1998) Role of insulin resistance in human disease. Diabetes 37(12):1595–1607

    Google Scholar 

  18. Ong G, Ripley L, Newsom R, Cooper M, Casswell A (2004) Screening for sight-threatening diabetic retinopathy: comparison of fundus photography with automated color contrast threshold test. Am J Ophthalmol 137(3):445–452

    Google Scholar 

  19. Tielsch J, Katz J, Singh K, Quigley H, Gottsch J, Javitt J, Sommer A (1991) A population-based evaluation of glaucoma screening: the Baltimore eye survey. Am J Epidemiol 134(10):1102–1110

    Google Scholar 

  20. Heijl A, Leske M, Bengtsson B, Hyman L, Bengtsson B, Hussein M (2002) Reduction of intraocular pressure and glaucoma progression: results from the early manifest glaucoma trial. Arch Ophthalmol 120(10):1268–1279

    Google Scholar 

  21. Brothers RHL, King W, Clegg L, Klein R, Cooper L, Sharrett A, Davis M, Cai J (1999) Atherosclerosis risk in communities study group. methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the atherosclerosis risk in communities study. Ophthalmology 106(12):2269–2280

    Google Scholar 

  22. Lim L, Mitchell P, Seddon J, Holz F, Wong T (2012) Age-related macular degeneration. The Lancet 379(9827):1728–1738

    Google Scholar 

  23. Wong C, Yanagi Y, Lee W, Ogura Y, Yeo I, Wong T, Cheung C (2016) Age-related macular degeneration and polypoidal choroidal vasculopathy in Asians. Prog Retinal Eye Res 53:107–139

    Google Scholar 

  24. Frangi A, Niessen W, Vincken K, Viergever M (1998) Multiscale vessel enhancement filtering. In: Medical image computing and computer-assisted interventation—MICCAI’98. Springer, Berlin Heidelberg, pp 130–137

  25. Sofka M, Stewart C (2006) Retinal vessel centerline extraction using multiscale matched filters, confidence and edge measures. IEEE Trans Med Imaging 25(12):1531–1546

    Google Scholar 

  26. Hoover A, Kouznetsova V, Goldbaum M (2000) Locating blood vessels in retinal images by piece-wise threhsold probing of a matched filter response. IEEE Trans Med Imaging 19(3):203–210

    Google Scholar 

  27. Martínez-Pérez M, Hughes A, Stanton A, Thom S, Bharath A, Parker K (1999) Retinal blood vessel segmentation by means of scale-space analysis and region growing. In: medical image computing and computer-assisted intervention—MICCAI’99. Springer, Berlin Heidelberg, pp 90–97

  28. Martinez-Perez M, Hughes A, Thom S, Bharath A, Parker K (2007) Segmentation of blood vessels from red-free and fluorescein retinal images. Med Image Anal 11(1):47–61

    Google Scholar 

  29. Farnell D, Hatfield F, Knox P, Reakes M, Spencer S, Parry D, Harding S (2008) Enhancement of blood vessels in digital fundus photographs via the application of multiscale line operators. J Frankl Inst 345(7):748–765

    MATH  Google Scholar 

  30. Vlachos M, Dermatas E (2010) Multi-scale retinal vessel segmentation using line tracking. Comput Med Imaging Graph 34(3):213–227

    Google Scholar 

  31. Li Q, You J, Zhang D (2012) Vessel segmentation and width estimation in retinal images using multiscale production of matched filter responses. Expert Syst Appl 39(9):7600–7610

    Google Scholar 

  32. Moghimirad E, Rezatofighi S, Soltanian-Zadeh H (2012) Retinal vessel segmentation using a multi-scale medialness function. Comput Biol Med 42(1):50–60

    Google Scholar 

  33. Yu H, Barriga S, Agurto C, Zamora G, Bauman W, Soliz P (2012) Fast vessel segmentation in retinal images using multiscale enhancement and second-order local entropy. In: SPIE medical imaging. International society for optics and photonics, pp 83151B–83151B

  34. Ricci E, Perfetti R (2007) Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans Med Imaging 26(10):1357–1365

    Google Scholar 

  35. Nguyen U, Bhuiyan A, Park L, Ramamohanarao K (2013) An effective retinal blood vessel segmentation method using multi-scale line detection. Pattern Recognit 46(3):703–715

    Google Scholar 

  36. Fathi A, Naghsh-Nilchi A (2013) Automatic wavelet-based retinal blood vessels segmentation and vessel diameter estimation. Biomed Signal Process Control 8(1):71–80

    Google Scholar 

  37. Azzopardi G, Petkov N (2013) Trainable COSFIRE filters for keypoint detection and pattern recognition. IEEE Trans Pattern Anal Mach Intell 35(2):490–503

    Google Scholar 

  38. Akram M, Khan S (2013) Multilayered thresholding-based blood vessel segmentation for screening of diabetic retinopathy. Eng Comput 29(2):165–173

    Google Scholar 

  39. Wang Y, Ji G, Lin P, Trucco E (2013) Retinal vessel segmentation using multiwavelet kernels and multiscale hierarchical decomposition. Pattern Recognit 46(8):2117–2133

    Google Scholar 

  40. Ganjee R, Azmi R, Gholizadeh B (2014) An improved retinal vessel segmentation method based on high level features for pathological images. J Med Syst 38(9):1–9

    Google Scholar 

  41. Zhang B, Zhang L, Zhang L, Karray F (2010) Retinal vessel extraction by matched filter with first-order derivative of Gaussian. Comput Biol Med 40(4):438–445

    Google Scholar 

  42. Mapayi T, Viriri S, Tapamo J (2014) A new adaptive thresholding technique for retinal vessel segmentation based on local homogeneity information. In: Image and signal processing. Springer, pp 558–567

  43. Ravichandran C, Raja J (2014) A fast enhancement/thresholding based blood vessel segmentation for retinal image using contrast limited adaptive histogram equalization. J Med Imaging Health Inf 4(4):567–575

    Google Scholar 

  44. Annunziata R, Garzelli A, Ballerini L, Mecocci A, Trucco E (2015) Leveraging multiscale hessian-based enhancement with a novel exudate inpainting technique for retinal vessel segmentation. IEEE J Biomed Health Inf 20(4):1129–1138

    Google Scholar 

  45. Marin D, Aquino A, Gegundez-Arias M, Bravo J (2011) A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans Med Imaging 30:146–158

    Google Scholar 

  46. Fraz M, Welikala R, Rudnicka A, Owen C, Strachan D, Barman S (2015) QUARTZ: quantitative analysis of retinal vessel topology and size—an automated system for quantification of retinal vessels morphology. Expert Syst Appl 42(20):7221–7234

    Google Scholar 

  47. Bao XR, Ge X, She LH, Zhang S (2015) Segmentation of retinal blood vessels based on cake filter. BioMed Res Int 2015:137024–137024

    Google Scholar 

  48. Kar S, Maity S (2016) Blood vessel extraction and optic disc removal using curvelet transform and kernel fuzzy c-means. Comput Biol Med 70:174–189

    Google Scholar 

  49. Emary E, Zawbaa H, Hassanien A, Parv B (2016) Multi-objective retinal vessel localization using flower pollination search algorithm with pattern search. Adv Data Anal Classif 11:1–7

    MathSciNet  MATH  Google Scholar 

  50. Shehhi RA, Marpu P, Woon W (2016) An automatic cognitive graph-based segmentation for detection of blood vessels in retinal images. Mathe Probl Eng 2016:15. https://doi.org/10.1155/2016/7906165

    MathSciNet  MATH  Google Scholar 

  51. Khan KB, Khaliq AA, Shahid M (2016) A morphological hessian based approach for retinal blood vessels segmentation and denoising using region based otsu thresholding. PLoS ONE 11(7):e0158996

    Google Scholar 

  52. Mendonca A, Campilho A (2006) Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans Med Imaging 25(9):1200–1213

    Google Scholar 

  53. Zana F, Jean-Claude K (2001) Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Trans Image Process 10(7):1010–1019

    MATH  Google Scholar 

  54. Ayala G, León T, Zapater V (2005) Different averages of a fuzzy set with an application to vessel segmentation. IEEE Trans Fuzzy Syst 13(3):384–393

    Google Scholar 

  55. Yang Y, Huang S, Rao N (2008) An automatic hybrid method for retinal blood vessel extraction. Int J Appl Math Comput Sci 18(3):399–407

    MATH  Google Scholar 

  56. Fraz M, Remagnino P, Hoppe A, Uyyanonvara B, Owen C, Rudnicka A, Barman S (2011) Retinal vessel extraction using first-order derivative of Gaussian and morphological processing. In: Advances in visual computing. Springer, Berlin Heidelberg, pp 410–420

  57. Miri M, Mahloojifar A (2011) Retinal image analysis using curvelet transform and multistructure elements morphology by reconstruction. IEEE Trans Biomed Eng 58(5):1183–1192

    Google Scholar 

  58. Rossant F, Badellino M, Chavillon A, Bloch I, Paques M (2011) A morphological approach for vessel segmentation in eye fundus images, with quantitative evaluation. J Med Imaging Health Inf 1(1):42–49

    Google Scholar 

  59. Fraz M, Barman S, Remagnino P, Hoppe A, Basit A, Uyyanonvara B, Rudnicka A, Owen C (2012) An approach to localize the retinal blood vessels using bit planes and centerline detection. Comput Methods Programs Biomed 108(2):600–616

    Google Scholar 

  60. Fraz M, Basit A, Barman S (2013) Application of morphological bit planes in retinal blood vessel extraction. J Digit Imaging 26(2):274–286

    Google Scholar 

  61. Xu Y, Géraud T, Najman L (2013) Two applications of shape-based morphology: blood vessels segmentation and a generalization of constrained connectivity. In: Mathematical morphology and its applications to signal and image processing. Springer, Berlin Heidelberg, pp 390–401

  62. Sigurðsson E, Valero S, Benediktsson J, Chanussot J, Talbot H, Stefánsson E (2014) Automatic retinal vessel extraction based on directional mathematical morphology and fuzzy classification. Pattern Recognit Lett 47:164–171

    Google Scholar 

  63. Imani E, Javidi M, Pourreza H (2015) Improvement of retinal blood vessel detection using morphological component analysis. Comput Methods Programs Biomed 118(3):263–279

    Google Scholar 

  64. Chaudhuri S, Chatterjee S, Katz N, Nelson M, Goldbaum M (1989) Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans Med Imaging 8(3):263–269

    Google Scholar 

  65. Zhou L, Rzeszotarski M, Singerman L, Chokreff J (1994) The detection and quantification of retinopathy using digital angiograms. IEEE Trans Med Imaging 13(4):619–626

    Google Scholar 

  66. Al-Rawi M, Qutaishat M, Arrar M (2007) An improved matched filter for blood vessel detection of digital retinal images. Comput Biol Med 37(2):262–267

    Google Scholar 

  67. Zhang L, Li Q, You J, Zhang D (2009) A modified matched filter with double-sided thresholding for screening proliferative diabetic retinopathy. IEEE Trans Inf Technol Biomed 13(4):528–534

    Google Scholar 

  68. Gang L, Chutatape O, Krishnan SM (2002) Detection and measurement of retinal vessels in fundus images using amplitude modified second-order Gaussian filter. IEEE Trans Biomed Eng 49(2):168–172

    Google Scholar 

  69. Jiang X, Mojon D (2003) Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images. IEEE Trans Pattern Anal Mach Intell 25(1):131–137

    Google Scholar 

  70. Sukkaew L, Uyyanonvara B, Barman S, Fielder A, Cocker K (2007) Automatic extraction of the structure of the retinal blood vessel network of premature infants. J Med Assoc Thai 90(9):1780–1792

    Google Scholar 

  71. Cinsdikici M, Aydın D (2009) Detection of blood vessels in ophthalmoscope images using MF/ant (matched filter/ant colony) algorithm. Comput Methods Programs Biomed 96(2):85–95

    Google Scholar 

  72. Amin M, Yan H (2011) High speed detection of retinal blood vessels in fundus image using phase congruency. Soft Comput 15(6):1217–1230

    Google Scholar 

  73. Kaba D, Salazar-Gonzalez A, Li Y, Liu X, Serag A (2013) Segmentation of retinal blood vessels using gaussian mixture models and expectation maximisation. In: Health Information Science. Springer, Berlin Heidelberg, pp 105–112

  74. Chakraborti T, Jha D, Chowdhury A, Jiang X (2015) A self-adaptive matched filter for retinal blood vessel detection. Mach Vis Appl 26(1):55–68

    Google Scholar 

  75. Zhang J, Bekkers E, Abbasi S, Dashtbozorg B, Romeny BTH (2015) Robust and fast vessel segmentation via Gaussian derivatives in orientation scores. In: Image analysis and processing—ICIAP 2015. Springer, pp 537–547

  76. Singh N, Srivastava R (2016) Retinal blood vessels segmentation by using Gumbel probability distribution function based matched filter. Comput Methods Programs Biomed 129:40–50

    Google Scholar 

  77. Fadzil MA, Izhar L, Venkatachalam P, Karunakar T (2007) Extraction and reconstruction of retinal vasculature. J Med Eng Technol 31(6):435–442

    Google Scholar 

  78. Palomera-Pérez M, Martinez-Perez M, Benítez-Pérez H, Ortega-Arjona J (2010) Parallel multiscale feature extraction and region growing: application in retinal blood vessel detection. IEEE Trans Inf Technol Biomed 14(2):500–506

    Google Scholar 

  79. Jiang H, He B, Fang D, Ma Z, Yang B, Zhang L (2013). A region growing vessel segmentation algorithm based on spectrum information. Comput Math Methods Med 2013:743870–743870

    MathSciNet  MATH  Google Scholar 

  80. Zhao Y, Wang X, Wang X, Shih F (2014) Retinal vessels segmentation based on level set and region growing. Pattern Recognit 47(7):2437–2446

    Google Scholar 

  81. Dizdaroğlu B, Ataer-Cansizoglu E, Kalpathy-Cramer J, Keck K, Chiang M, Erdogmus D (2014) Structure-based level set method for automatic retinal vasculature segmentation. EURASIP J Image Video Process 2014(1):1–26

    Google Scholar 

  82. You S, Bas E, Erdogmus D, Kalpathy-Cramer J (2011) Principal curved based retinal vessel segmentation towards diagnosis of retinal diseases. In: Healthcare informatics, imaging and systems biology (HISB), 2011 first IEEE international conference. IEEE, pp 331–337

  83. Panda R, Puhan NB, Panda G (2016). New binary Hausdorff symmetry measure based seeded region growing for retinal vessel segmentation. Biocybern Biomed Eng 36(1):119–129

    Google Scholar 

  84. Lázár I, Hajdu A (2015) Segmentation of retinal vessels by means of directional response vector similarity and region growing. Comput Biol Med 66:209–221

    Google Scholar 

  85. Staal J, Abràmoff M, Niemeijer M, Viergever M, Ginneken BV (2004) Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 23(4):501–509

    Google Scholar 

  86. Soares J, Leandro J, Jr RC, Jelinek H, Cree M (2006) Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans Med Imaging 25(9):1214–1222

    Google Scholar 

  87. Anzalone A, Bizzarri F, Parodi M, Storace M (2008) A modular supervised algorithm for vessel segmentation in red-free retinal images. Comput Biol Med 38(8):913–922

    Google Scholar 

  88. Osareh A, Shadgar B (2009) Automatic blood vessel segmentation in color images of retina. Iran J Sci Technol 33(B2):191–206

    MATH  Google Scholar 

  89. Xu L, Luo S (2010) A novel method for blood vessel detection from retinal images. Biomed Eng Online 9(1):14

    Google Scholar 

  90. Lupaşcu C, Tegolo D, Trucco E (2010) FABC: retinal vessel segmentation using AdaBoost. IEEE Trans Inf Technol Biomed 14(5):1267–1274

    Google Scholar 

  91. You X, Peng Q, Yuan Y, Cheung Y, Lei J (2011) Segmentation of retinal blood vessels using the radial projection and semi-supervised approach. Pattern Recognit 44(10):2314–2324

    Google Scholar 

  92. Varnousfaderani E, Yousefi S, Bowd C, Belghith A, Goldbaum M (2015) Vessel delineation in retinal images using leung-malik filters and two levels hierarchical learning. AMIA Annu Symp Proc 2015:1140 American Medical Informatics Association

    Google Scholar 

  93. Roychowdhury S, Koozekanani D, Parhi K (2015) Blood vessel segmentation of fundus images by major vessel extraction and subimage classification. IEEE J Biomed Health Inf 19(3):1118–1128

    Google Scholar 

  94. Orlando JI, Prokofyeva E, Blaschko MB (2017) A discriminatively trained fully connected conditional random field model for blood vessel segmentation in fundus images. IEEE Trans Biomed Eng 64(1):16–27

    Google Scholar 

  95. Akita K, Kuga H (1982) A computer method of understanding ocular fundus images. Pattern Recognit 15(6):431–443

    Google Scholar 

  96. Sinthanayothin C, Boyce J, Cook H, Williamson T (1999) Automated localization of the optic disc, fovea, and retinal blood vessels from digital color fundus images. Br J Ophthalmol 83(8):902–910

    Google Scholar 

  97. Nekovei R, Sun Y (1995) Back-propagation network and its configuration for blood vessel detection in angiograms. IEEE Trans Neural Netw 6(1):64–72

    Google Scholar 

  98. Yao C, Chen H (2009) Automated retinal blood vessels segmentation based on simplified PCNN and fast 2D-Otsu algorithm. J Cent South Univ Technol 16:640–646

    Google Scholar 

  99. Lupaşcu C, Tegolo D (2010) Automatic unsupervised segmentation of retinal vessels using self-organizing maps and k-means clustering. In: Computational intelligence methods for bioinformatics and biostatistics. Springer, Berlin Heidelberg, pp 263–274

  100. Vega R, Guevara E, FalconL, Sanchez-Ante G, Sossa H (2013) Blood vessel segmentation in retinal images using lattice neural networks. In: Advances in artificial intelligence and its applications. Springer, Berlin Heidelberg, pp 532–544

  101. Vega R, Sanchez-Ante G, Falcon-Morales L, Sossa H, Guevara E (2015) Retinal vessel extraction using lattice neural networks with dendritic processing. Comput Biol Med 58:20–30

    Google Scholar 

  102. Sossa H, Guevara E (2014) Efficient training for dendrite morphological neural networks. Neurocomputing 131:132–142

    Google Scholar 

  103. Andersson T, Lathen G, Lenz R, Borga M (2013) Modified gradient search for level set based image segmentation. IEEE Trans Image Process 22(2):621–630

    MathSciNet  MATH  Google Scholar 

  104. Anitha J, Hemanth D (2013) An efficient Kohonen-fuzzy neural network based abnormal retinal image classification system. Neural Netw World 23(2):149–167

    Google Scholar 

  105. Franklin S, Rajan S (2014) Retinal vessel segmentation employing ANN technique by Gabor and moment invariants-based features. Appl Soft Comput 22:94–100

    Google Scholar 

  106. Li Q, Feng B, Xie L, Liang P, Zhang H, Wang T (2016) A cross-modality learning approach for vessel segmentation in retinal images. IEEE Trans Med Imaging 35(1)109–118

    Google Scholar 

  107. Sironi A, Tekin B, Rigamonti R, Lepetit V, Fua P (2015) Learning separable filters. IEEE Trans Pattern Anal Mach Intell 37(1):94–106

    Google Scholar 

  108. Ceylan M, Yasar H (2016) A novel approach for automatic blood vessel extraction in retinal images: complex ripplet-I transform and complex valued artificial neural network. Turk J Electr Eng Comput Sci 24(4):3212–3227

    Google Scholar 

  109. Liskowski P, Krawiec K (2016) Segmenting retinal blood vessels with deep neural networks. IEEE Trans Med Imaging 35(11):2369–2380

    Google Scholar 

  110. Fraz M, Remagnino P, Hoppe A, Uyyanonvara B, Rudnicka A, Owen C, Barman S (2012) Ensemble classification system applied for retinal vessel segmentation on child images containing various vessel profiles. In: Image analysis and recognition. Springer, Berlin Heidelberg, pp 380–389

  111. Fraz M, Remagnino P, Hoppe A, Uyyanonvara B, Rudnicka A, Owen C, Barman S (2012) An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans Biomed Eng 59(9):2538–2548

    Google Scholar 

  112. Fraz M, Rudnicka A, Owen C, Barman S (2014) Delineation of blood vessels in pediatric retinal images using decision trees-based ensemble classification. Int J Comput Assist Radiol Surg 9(5):795–811

    Google Scholar 

  113. Wang S, Yin Y, Cao G, Wei B, Zheng Y, Yang G (2015) Hierarchical retinal blood vessel segmentation based on feature and ensemble learning. Neurocomputing 149:708–717

    Google Scholar 

  114. Welikala R, Fraz M, Foster P, Whincup P, Rudnicka A, Owen C, Strachan D, Barman S (2016) Automated retinal image quality assessment on the UK Biobank dataset for epidemiological studies. Comput Biol Med 71:67–76

    Google Scholar 

  115. Zhu C, Zou B, Xiang Y, Cui J, Wu H (2016) An ensemble retinal vessel segmentation based on supervised learning in fundus images. Chin J Electron 25(3):503–511

    Google Scholar 

  116. Liu I, Sun Y (1993) Recursive tracking of vascular networks in angiograms based on the detection-deletion scheme. IEEE Trans Med Imaging 12:334–341

    Google Scholar 

  117. Chutatape O, Liu Z, Krishnan SM (1998) Retinal blood vessel detection and tracking by matched Gaussian and Kalman filters. In: Engineering in medicine and biology society, 1998. Proceedings of the 20th annual international conference of the IEEE, vol 20, no 6, pp 3144–3149

  118. Tolias Y, Panas S (1998) A fuzzy vessel tracking algorithm for retinal images based on fuzzy clustering. IEEE Trans Med Imaging 17(2):263–273

    Google Scholar 

  119. Can A, Shen H, Turner J, Tanenbaum H, Roysam B (1999) Rapid automated tracing and feature extraction from retinal fundus images using direct exploratory algorithms. IEEE Trans Inf Technol Biomed 3(2):125–138

    Google Scholar 

  120. Lalonde M, Gagnon L, Boucher M (2000) Non-recursive paired tracking for vessel extraction from retinal images. In: Vision interface, pp 61–68

  121. Quek F, Kirbas C (2001) Vessel extraction in medical images by wave-propagation and traceback. IEEE Trans Med Imaging 20(2):117–131

    Google Scholar 

  122. Delibasis K, Kechriniotis A, Tsonos C, Assimakis N (2010) Automatic model-based tracing algorithm for vessel segmentation and diameter estimation. Comput Methods Programs Biomed 100(2):108–122

    Google Scholar 

  123. Xu X, Niemeijer M, Song Q, Sonka M, Garvin M, Reinhardt J, Abràmoff M (2011) Vessel boundary delineation on fundus images using graph-based approach. IEEE Trans Med Imaging 30(6):1184–1191

    Google Scholar 

  124. Huang Y, Zhang J, Huang Y (2012) An automated computational framework for retinal vascular network labeling and branching order analysis. Microvasc Res 84(2):169–177

    Google Scholar 

  125. Yin Y, Adel M, Bourennane S (2012) Retinal vessel segmentation using a probabilistic tracking method. Pattern Recognit 45(4):1235–1244

    MATH  Google Scholar 

  126. Nayebifar B, Moghaddam H (2013) A novel method for retinal vessel tracking using particle filters. Comput Biol Med 43(5):541–548

    Google Scholar 

  127. Fraz M, Remagnino P, Hoppe A, Rudnicka A, Owen C, Whincup P, Barman S (2013) Quantification of blood vessel calibre in retinal images of multi-ethnic school children using a model based approach. Comput Med Imaging Graph 37(1):48–60

    Google Scholar 

  128. Yin Y, Adel M, Bourennane S (2013) Automatic segmentation and measurement of vasculature in retinal fundus images using probabilistic formulation. Computational and mathematical methods in medicine 2013:260410–260410

    MathSciNet  MATH  Google Scholar 

  129. Vázquez S, Cancela B, Barreira N, Penedo M, Rodríguez-Blanco M, Seijo M, Tuero GD, Barceló M, Saez M (2013) Improving retinal artery and vein classification by means of a minimal path approach. Mach Vis Appl 24(5):919–930

    Google Scholar 

  130. Bekkers E, Duits R, Berendschot T, Romeny BTH (2014) A multi-orientation analysis approach to retinal vessel tracking. J Math Imaging Vis 49(3):583–610

    MATH  Google Scholar 

  131. De J, Ma T, Li H, Dash M, Li C (2013) Automated tracing of retinal blood vessels using graphical models. In: Image analysis. Springer, Berlin, pp 277–289

  132. De J, Li H, Cheng L (2014) Tracing retinal vessel trees by transductive inference. BMC Bioinform 15(1):20

    Google Scholar 

  133. Poletti E, Ruggeri A (2014) Graph search retinal vessel tracking. In: Ophthalmological imaging and applications, pp 97–115

  134. Zhang J, Li H, Nie Q, Cheng L (2014) A retinal vessel boundary tracking method based on Bayesian theory and multi-scale line detection. Comput Med Imaging Graph 38(6):517–525

    Google Scholar 

  135. Cheng L, De J, Zhang X, Lin F, Li H (2014) Tracing retinal blood vessels by matrix-forest theorem of directed graphs. In: Medical image computing and computer-assisted intervention–MICCAI, Springer, pp 626–633

  136. Chen D, Cohen L (2015) Piecewise geodesics for vessel centerline extraction and boundary delineation with application to retina segmentation. In: Scale space and variational methods in computer vision, pp 270–281

  137. Vermeer K, Vos F, Lemij H, Vossepoel A (2004) A model based method for retinal blood vessel detection. Comput Biol Med 34(3):209–219

    Google Scholar 

  138. Huber P (1965) A robust version of the probability ratio test. Ann Math Stat 36(6):1753–1758

    MathSciNet  MATH  Google Scholar 

  139. Field C, Smith B (1994) Robust estimation: a weighted maximum likelihood approach. Int Stat Rev 405–424

  140. Ronchetti E (1985) Robust model selection in regression. Stat Probab Lett 3(3):21–23

    MathSciNet  Google Scholar 

  141. Mahadevan V, Narasimha-Iyer H, Roysam B, Tanenbaum H (2004) Robust model-based vasculature detection in noisy biomedical images. IEEE Trans Inf Technol Biomed 8(3):360–376

    Google Scholar 

  142. Narasimha-Iyer H, Mahadevan V, Beach J, Roysam B (2008) Improved detection of the central reflex in retinal vessels using a generalized dual-Gaussian model and robust hypothesis testing. IEEE Trans Inf Technol Biomed 12(3):406–410

    Google Scholar 

  143. Alonso-Montes C, Vilariño D, Penedo M (2005) On the automatic 2D retinal vessel extraction. In: Pattern recognition and image analysis. Springer, Berlin, pp 165–173

  144. Perfetti R, Ricci E, Casali D, Costantini G (2007) Cellular neural networks with virtual template expansion for retinal vessel segmentation. IEEE Trans Circuits Syst II Express Briefs 54(2):141–145

    Google Scholar 

  145. Wang L, Bhalerao A, Wilson R (2007) Analysis of retinal vasculature using a multi-resolution hermite model. IEEE Trans Med Imaging 26(2):137–152

    Google Scholar 

  146. Narasimha-Iyer H, Beach J, Khoobehi B, Roysam B (2007) Automatic identification of retinal arteries and veins from dual-wavelength images using structural and functional features. IEEE Trans Biomed Eng 54(8):1427–1435

    Google Scholar 

  147. Lam B, Yan H (2008) A novel vessel segmentation algorithm for pathological retina images based on the divergence of vector fields. IEEE Trans Med Imaging 27(2):237–246

    Google Scholar 

  148. Alonso-Montes C, Vilarino D, Dudek P, Penedo M (2008) Fast retinal vessel tree extraction: a pixel parallel approach. Int J Circuit Theory Appl 36(5–6):641–651

    Google Scholar 

  149. Alonso-Montes C, Vilarino D, Penedo M (2005) CNN-based automatic retinal vascular tree extraction. In: Cellular neural networks and their applications, 2005 9th International Workshop. IEEE, pp 61–64

  150. Dudek P, Carey S (2006) General-purpose 128/spl times/128 SIMD processor array with integrated image sensor. Electron Lett 42(12):678–679

    Google Scholar 

  151. Vilariño D, Rekeczky C (2004) Implementation of a pixel-level snake algorithm on a CNNUM-based chip set architecture. IEEE Trans Circuits Syst I Regul Pap 51(5):885–891

    Google Scholar 

  152. Lam B, Gao Y, Liew A (2010) General retinal vessel segmentation using regularization-based multiconcavity modeling. IEEE Trans Med Imaging 29(7):1369–1381

    Google Scholar 

  153. Gao X, Bharath A, Stanton A, Hughes A, Chapman N, Thom S (2001) A method of vessel tracking for vessel diameter measurement on retinal images. In: Image processing, proceedings 2001 international conference. IEEE, vol 2, pp 881–884

  154. Zhu T (2010) Fourier cross-sectional profile for vessel detection on retinal images. Comput Med Imaging Graph 34(3):203–212

    Google Scholar 

  155. Kovesi P (2003) Phase congruency detects corners and edges. In: The Australian pattern recognition society conference: DICTA

  156. Kovács G, Hajdu A (2016) A self-calibrating approach for the segmentation of retinal vessels by template matching and contour reconstruction. Med Image Anal 29:24–46

    Google Scholar 

  157. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4):321–331

    MATH  Google Scholar 

  158. McInerney T, Terzopoulos D (2000) T-snakes: topology adaptive snakes. Med Image Anal 4(2):73–91

    Google Scholar 

  159. McInerney T, Hamarneh G, Shenton M, Terzopoulos D (2002) Deformable organisms for automatic medical image analysis. Med Image Anal 6(3):251–266

    MATH  Google Scholar 

  160. Nain D, Yezzi A, Turk G (2004) Vessel segmentation using a shape driven flow. In: Medical image computing and computer-assisted intervention–MICCAI. Springer, Berlin, pp 51–59

  161. Espona L, Carreira M, Ortega M, Penedo M (2007) A snake for retinal vessel segmentation. In: Pattern recognition and image analysis. Springer, Berlin, pp 178–185

  162. Al-Diri B, Hunter A, Steel D (2009) An active contour model for segmenting and measuring retinal vessels. IEEE Trans Med Imaging 28(9):1488–1497

    Google Scholar 

  163. Chan T, Vese L (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277

    MATH  Google Scholar 

  164. Sum K, Cheung P (2008) Vessel extraction under non-uniform illumination: a level set approach. IEEE Trans Biomed Eng 55(1):358–360

    Google Scholar 

  165. Zhang Y, Hsu W, Lee M (2009) Detection of retinal blood vessels based on nonlinear projections. J Signal Process Syst 55(1–3):103–112

    Google Scholar 

  166. Oloumi F, Rangayyan R, Ells A (2012) Parabolic modeling of the major temporal arcade in retinal fundus images. IEEE Trans Instrum Meas 61(7):1825–1838

    Google Scholar 

  167. Rouchdy Y, Cohen L (2013) Geodesic voting methods: overview, extensions and application to blood vessel segmentation. Comput Methods Biomech Biomed Eng Imaging Vis 1(2):79–88

    Google Scholar 

  168. Guo Z, Lin P, Ji G, Wang Y (2014) Retinal vessel segmentation using a finite element based binary level set method. Inverse Probl Imaging 8(2):459–473

    MathSciNet  MATH  Google Scholar 

  169. Lermé N, Rossant F, Bloch I, Paques M, Koch E (2014) Coupled parallel snakes for segmenting healthy and pathological retinal arteries in adaptive optics images. In: Image analysis and recognition. Springer, pp 311–320

  170. Zhao Y, Rada L, Chen K, Harding S (2015) Automated vessel segmentation using infinite perimeter active contour model with hybrid region information with application to retinal images. IEEE Trans Med Imaging 34(9):1797–1807

    Google Scholar 

  171. Wang L, Zhang H, He K, Chang Y, Yang X (2015) Active contours driven by multi-feature gaussian distribution fitting energy with application to vessel segmentation. PLoS ONE 10(11):e0143105

    Google Scholar 

  172. Rad AE, Rahim MSM, Kolivand H, Amin IBM (2017) Morphological region-based initial contour algorithm for level set methods in image segmentation. Multimed Tools Appl 76(2):2185–2201

    Google Scholar 

  173. Oliveira W, Teixeira J, Ren T, Cavalcanti G, Sijbers J (2016) Unsupervised retinal vessel segmentation using combined filters. PLoS ONE 11(2):e0149943

    Google Scholar 

  174. Nieto A, Brea V, Vilariňo D (2009) FPGA-accelerated retinal vessel-tree extraction. In: Field programmable logic and applications, FPL 2009. International conference, IEEE, pp 485–488

  175. Krause M, Alles RM, Burgeth B, Weickert J (2016) Fast retinal vessel analysis. J Real Time Image Process 11(2):413–422

    Google Scholar 

  176. Koukounis D, Ttofis C, Papadopoulos A, Theocharides T (2014) A high performance hardware architecture for portable, low-power retinal vessel segmentation. Integr VLSI J 47(3):377–386

    Google Scholar 

  177. Argüello F, Vilariño DL, Heras DB, Nieto A (2018) GPU-based segmentation of retinal blood vessels. J Real Time Image Process 14(4):773–782

    Google Scholar 

  178. Villalobos-Castaldi F, Felipe-Riverón E, Sánchez-Fernández L (2010) A fast, efficient and automated method to extract vessels from fundus images. J Vis 13(3):263–270

    Google Scholar 

  179. Condurache A, Mertins A (2012) Segmentation of retinal vessels with a hysteresis binary-classification paradigm. Comput Med Imaging Graph 36(4):325–335

    Google Scholar 

  180. Mudassar A A, Butt S (2013) Extraction of blood vessels in retinal images using four different techniques. J Med Eng 2013:408120–408120

    Google Scholar 

  181. Salazar-Gonzalez A, Kaba D, Li Y, Liu X (2014) Segmentation of blood vessels and optic disc in retinal images. IEEE J Biomed Health Inf 18(6):1874–1886

    Google Scholar 

  182. Jiang K, Zhou Z, Geng X, Zhang X, Tang L, Wu H, Dong J (2015) Isotropic undecimated wavelet transform fuzzy algorithm for retinal blood vessel segmentation. J Med Imaging Health Inf 5(7):1524–1527

    Google Scholar 

  183. Dai P, Luo H, Sheng H, Zhao Y, Li L, Wu J, Zhao Y, Suzuki K (2015) A new approach to segment both main and peripheral retinal vessels based on gray-voting and gaussian mixture model. PLoS ONE 10(6):e0127748

    Google Scholar 

  184. Fumero F, Alayón S, Sanchez J, Sigut J, Gonzalez-Hernandez M (2011) RIM-ONE: an open retinal image database for optic nerve evaluation. In: Computer-based medical systems (CBMS), 2011 24th international symposium, IEEE, pp 1–6

  185. Niemeijer M, Staal J, Ginneken B, Loog M, Abramoff M (2004) DRIVE: digital retinal images for vessel extraction. http://www.isi.uu.nl/Research/Databases/DRIVE

  186. MESSIDOR: Methods for evaluating segmentation and indexing techniques dedicated to retinal ophthalmology (2004) http://messidor.crihan.fr/index-en.php

  187. ARIA online, retinal image archive (2006) http://www.eyecharity.com/aria_online.html

  188. Kauppi T, Kalesnykiene V, Kamarainen JK, Lensu L, Sorri I, Raninen A, Voutilainen R, Uusitalo H, K¨alvi¨ainen H, Pietil J (2007) DIARETDB1 diabetic retinopathy database and evaluation protocol. Proc Med Image Underst Anal MIUA 1:3–7

    Google Scholar 

  189. IMAGERET-optimal detection and decision-support diagnosis of diabetic retinopathy. http://www.it.lut.fi/project/imageret/

  190. Al-Diri B, Hunter A, Steel D, Habib M, Hudaib T, Berry S (2008) REVIEW-a reference data set for retinal vessel profiles. In: Engineering in medicine and biology society. EMBS 2008, 30th annual international conference of the IEEE, pp 2262–2265

  191. Carmona E, Rincón M, García-Feijoó J, Martínez-de-la-Casa J (2008) Identification of the optic nerve head with genetic algorithms. Artif Intell Med 43(3):243–259

    Google Scholar 

  192. García-Feijoo J, Martínez-de-la-Casa JM, Carmona E, Rincón M, Mayoral M (2008) DRIONS-DB. http://www.ia.uned.es/~ejcarmona/DRIONS-DB.html

  193. Niemeijer M, Ginneken BV, Cree M, Mizutani A, Quellec G, Sánchez C, Zhang B, Hornero R, Lamard M, Muramatsu C, Wu X (2010) Retinopathy online challenge: automatic detection of microaneurysms in digital color fundus photographs. IEEE Trans Med Imaging 29(1):185–195

    Google Scholar 

  194. Budai A, Hornegger J, Michelson G (2009) Multiscale approach for blood vessel segmentation on retinal fundus images. Invest Ophthalmol Vis Sci 50(13):325

    Google Scholar 

  195. The VICAVR database (2010) http://www.varpa.es/vicavr.html

  196. Giancardo L, Meriaudeau F, Karnowski T, Li Y, Garg S, Tobin K, Chaum E (2012) Exudate-based diabetic macular edema detection in fundus images using publicly available datasets. Med Image Anal 16(1):216–226

    Google Scholar 

  197. Prentasic P, Loncaric S, Vatavuk Z, Bencic G, Subasic M, Petkovic T, Dujmovic L, Malenica-Ravlic M, Budimlija N, Tadic R (2013) Diabetic retinopathy image database (DRiDB): a new database for diabetic retinopathy screening programs research. In: Image and signal processing and analysis (ISPA), 2013 8th international symposium, pp 711–716

  198. Shahbeig S (2013) Automatic and quick blood vessels extraction algorithm in retinal images. IET Image Proc 7(4):392–400

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khan Bahadar Khan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, K.B., Khaliq, A.A., Jalil, A. et al. A review of retinal blood vessels extraction techniques: challenges, taxonomy, and future trends. Pattern Anal Applic 22, 767–802 (2019). https://doi.org/10.1007/s10044-018-0754-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-018-0754-8

Keywords