Abstract:
In this paper, we provide a simple, “generic” interpretation of multifractal scaling laws and multiplicative cascade process paradigms in terms of volatility correlations. We show that in this context 1/f power spectra, as recently observed in reference [23], naturally emerge. We then propose a simple solvable “stochastic volatility” model for return fluctuations. This model is able to reproduce most of recent empirical findings concerning financial time series: no correlation between price variations, long-range volatility correlations and multifractal statistics. Moreover, its extension to a multivariate context, in order to model portfolio behavior, is very natural. Comparisons to real data and other models proposed elsewhere are provided.
Similar content being viewed by others
Author information
Authors and Affiliations
Additional information
Received 22 May 2000
Rights and permissions
About this article
Cite this article
Muzy, J., Delour, J. & Bacry, E. Modelling fluctuations of financial time series: from cascade process to stochastic volatility model. Eur. Phys. J. B 17, 537–548 (2000). https://doi.org/10.1007/s100510070131
Issue Date:
DOI: https://doi.org/10.1007/s100510070131