Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Interior-point 2-penalty methods for nonlinear programming with strong global convergence properties

  • Published:
Mathematical Programming Submit manuscript

Abstract

We propose two line search primal-dual interior-point methods for nonlinear programming that approximately solve a sequence of equality constrained barrier subproblems. To solve each subproblem, our methods apply a modified Newton method and use an 2-exact penalty function to attain feasibility. Our methods have strong global convergence properties under standard assumptions. Specifically, if the penalty parameter remains bounded, any limit point of the iterate sequence is either a Karush-Kuhn-Tucker (KKT) point of the barrier subproblem, or a Fritz-John (FJ) point of the original problem that fails to satisfy the Mangasarian-Fromovitz constraint qualification (MFCQ); if the penalty parameter tends to infinity, there is a limit point that is either an infeasible FJ point of the inequality constrained feasibility problem (an infeasible stationary point of the infeasibility measure if slack variables are added) or a FJ point of the original problem at which the MFCQ fails to hold. Numerical results are given that illustrate these outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Argáez, M., Tapia, R.A.: On the global convergence of a modified augmented Lagrangian linesearch interior-point Newton method for Nonlinear Programming. J. Optim. Theory Appl., 114, 1–25 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bakhtiari, S., Tits, A.L.: A Simple primal-dual feasible interior-point method for nonlinear programming with monotone descent. Comput. Optim. Appl., 25, 17–38 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Benson, H.Y., Shanno, D.F., Vanderbei, R.J.: Interior-point methods for nonconvex nonlinear programming: Filter methods and merit functions. Comput. Optim. Appl., 23, 257–272

  4. Benson, H.Y., Shanno, D.F., Vanderbei, R.J.: Interior-point methods for nonconvex nonlinear programming: Jamming and comparative numerical testing. Math. Programming, 99, 35–48 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Burke, J.V., Han, S.P.: A robust sequential quadratic programming method. Math. Programming, 43, 277–303 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Byrd, R.H.: Robust trust-region method for constrained optimization. Paper presented at the SIAM Conference on Optimization, Houston, TX, 1987

  7. Byrd, R.H., Gilbert, J.C., Nocedal, J.: A trust region method based on interior point techniques for nonlinear programming. Math. Programming, 89, 149–185 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Byrd, R.H., Hribar, M.E., Nocedal, J.: An interior point algorithm for large-scale nonlinear programming. SIAM J. Optim., 9, 877–900 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Byrd, R.H., Liu, G., Nocedal, J.: On the local behavior of an interior point method for nonlinear programming. In D. F. Griffiths and D. J. Higham, editors, Numerical Analysis 1997, pp. 37–56. Addison-Wesley Longman, Reading, MA, 1997

  10. Byrd, R.H., Marazzi, M., Nocedal, J.: On the convergence of Newton iterations to non-stationary points. Math. Programming, 99, 127–148 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Byrd, R.H., Nocedal, J., Waltz, A.: Feasible interior methods using slacks for nonlinear optimization. Comput. Optim. Appl., 26, 35–61 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Conn, A.R., Gould, N.I.M., Orban, D., Ph. Toint, L.: A primal-dual trust region algorithm for non-convex nonlinear programming. Math. Programming, 87, 215–249 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Conn, A.R., Gould, N.I.M., Ph. Toint, L.: A primal-dual algorithm for minimizing a non-convex function subject to bound and linear equality constraints. In Nonlinear optimization and related topics (Erice, 1998), Kluwer Acad. Publ., Dordrecht, pp. 15–49, 2000

  14. Dennis, J.E., Heinkenschloss, M., Vicente, L.N.: Trust-region interior-point SQP algorithms for a class of nonlinear programming problems. SIAM J. Control Optim., 36, 1750–1794 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Durazzi, C., Ruggiero, V.: Global convergence of the Newton interior-point method for nonlinear programming. J. Optim. Theory Appl., 120, 199–208 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. El-Bakry, A.S., Tapia, R.A., Tsuchiya, T., Zhang, Y.: On the formulation and theory of the Newton interior-point method for nonlinear programming. J. Optim. Theory Appl., 89, pp 507–541 (1996)

    Google Scholar 

  17. Fiacco, A.V., McCormick, G.P.: Nonlinear programming: Sequential Unconstrained Minimization Techniques. Classics Appl. Math. 4, SIAM, Philadelphia, PA, 1990.

  18. Fletcher, R., Gould, N.I.M., Leyffer, S., Ph. Toint, L., Wächter, A.: Global convergence of a trust-region SQP-filter algorithm for general nonlinear programming. SIAM J. Optim., 13, 635–659 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Fletcher, R., Leyffer, S.: Nonlinear Programming without a penalty function. Math. Programming, 91, 239–269 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Fletcher, R., Leyffer, S., Ph. Toint, L.: On the global convergence of a filter-SQP algorithm. SIAM J. Optim., 13, 44–59 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Forsgren, A.: Inertia-controlling factorizations for optimization algorithms. Appl. Numer. Math., 43, 91–107 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Forsgren, A., Gill, P.E.: Primal-dual interior method for nonconvex nonlinear programming. SIAM J. Optim., 8, 1132–1152 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  23. Forsgren, A., Gill, P.E., Wright, M.H.: Interior methods for nonlinear optimization. SIAM Rev., 44, 525–597 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  24. Gay, D.M., Overton, M.L., Wright, M.H.: A primal-dual interior method for nonconvex nonlinear programming. In Advances in Nonlinear Programming (Beijing, 1996), Y. Yuan, ed., Kluwer Acad. Publ., Dordrecht, pp. 31–56, 1998

  25. Gertz, E.M., Gill, P.E.: A primal-dual trust region algorithm for nonlinear optimization. Math. Programming, 100, 49–94 (2004)

    MATH  MathSciNet  Google Scholar 

  26. Goldfarb, D., Polyak, R., Scheinberg, K., Yuzefovich, I.: A modified barrier-augmented Lagrangian method for constrained minimization. Comput. Optim. Appl., 14, 55–74 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  27. Golub, G.H., Van Loan, C.F.: Matrix computations. 3rd ed., The Johns Hopkins Univ. Press, Baltimore, 1996.

  28. Gould, N.I.M., Orban, D., Sartenaer, A., Ph. Toint, L.: Superlinear convergence of primal-dual interior point algorithms for nonlinear programming. SIAM J. Optim., 11, 974–1002 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  29. Gould, N.I.M., Orban, D., Ph. Toint, L.: An interior-point l1-penalty method for nonlinear optimization. RAL-TR-2003-022, Computational Science and Engineering Department, Rutherford Appleton Laboratory, Chilton, Oxfordshire, England, 2003.

  30. Gonzaga, C.C., Karas, E., Vanti, M.: A globally convergent filter method for nonlinear programming. SIAM J. Optim., 14, 646–669 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  31. Griva, I., Shanno, D.F., Vanderbei, R.J.: Convergence analysis of a primal-dual interior-point method for nonlinear programming. Optimization Online ( http://www.optimization-online.org/DB_HTML/2004/07/913.html), July, 2004.

  32. Hock, W., Schittkowski, K.: Tests examples for nonlinear programming codes. volume 187 of Lecture Notes in Economics and Mathematical Systems. Springer-Verlag, 1981.

  33. Liu, X., Sun, J.: A robust primal-dual interior point algorithm for nonlinear programs. SIAM J. Optim., 14, pp 1163–1186 (2004)

    Google Scholar 

  34. Liu, X., Sun, J.: Global convergence analysis of line search interior point methods for nonlinear programming without regularity assumptions. J. Optim. Theory Appl., to appear.

  35. Mayne, D.Q., Polak, E.: Feasible direction algorithms for optimization problems with equality and inequality constraints. Math. Programming, 11, 67–80 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  36. Moguerza, J.M., Prieto, F.J.: An augmented Lagrangian interior-point method using directions of negative curvature. Math. Programming, 95, 573–616 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  37. Omojokun, E.O.: Trust region algorithms for nonlinear equality and inequality constraints. PhD thesis, Department of Computer Science, University of Colorado, Boulder, 1989.

  38. Shanno, D.F., Vanderbei, R.J.: Interior-point methods for nonconvex nonlinear programming: orderings and high-order methods. Math. Programming, 87, 303–316 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  39. Sporre, G., Forsgren, A.: Relations between divergence of multipliers and convergence to infeasible points in primal-dual interior methods for nonconvex nonlinear programming. Tech. Report TRITA-MAT-02-OS7, Department of Mathematics, Royal Institute of Technology (KTH), Stockholm, Sweden, 2002.

  40. Tits, A.L., Wächter, A., Bakhtiari, S., Urban, T.J., Lawrence, C.T.: A primal-dual interior-point method for nonlinear programming with strong global and local convergence properties. SIAM J. Optim., 14, 173–199 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  41. Tseng, P.: A convergent infeasible interior-point trust-region method for constrained minimization. SIAM J. Optim., 13, 432–469 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  42. Ulbrich, M., Ulbrich, S., Vicente, L.N.: A globally convergent primal-dual interior-point filter method for nonlinear programming. Math. Programming, 100, 379–410 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  43. Vanderbei, R.J., Shanno, D.F.: An interior-point algorithm for nonconvex nonlinear programming. Comput. Optim. Appl., 13, 231–252 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  44. Wächter, A., Biegler, L.T.: Failure of global convergence for a class of interior point methods for nonlinear programming. Math. Programming, 88, 565–574 (2000)

    Article  MATH  Google Scholar 

  45. Wächter, A., Biegler, L.T.: Line search filter methods for nonlinear programming: Motivation and global convergence. Res. Report RC 23036, IBM T. J. Watson Research Center, Yorktown, accepted by SIAM J. Optim., 2004.

  46. Wächter, A., Biegler, L.T.: Line search filter methods for nonlinear programming: Local convergence. Res. Report RC 23033, IBM T. J. Watson Research Center, Yorktown, accepted by SIAM J. Optim., 2004.

  47. Wächter, A. Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Res. Report RC 23149, IBM T. J. Watson Research Center, Yorktown, accepted by Math. Programming, 2004.

  48. Waltz, R.A., Morales, J.L., Nocedal, J., Orban, D.: An Interior Algorithm for Nonlinear Optimization that Combines Line Search and Trust Region Steps. Tech. Report, Optimization Technology Center, Northwestern University, Evanston, IL, 2003, to appear in Math. Programming.

  49. Yamashita, H.: A globally convergent primal-dual interior-point method for constrained optimization. Optim. Methods Softw., 10, 443–469 (1998)

    MATH  MathSciNet  Google Scholar 

  50. Yamashita, H., Yabe, H.: An interior point method with a primal-dual quadratic barrier penalty function for nonlinear optimizaiton. SIAM J. Optim., 14, 479–499 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  51. Yamashita, H., Yabe, H., Tanabe, T.: A globally and superlinearly convergent primal-dual interior point trust region method for large scale constrained optimization. Math. Programming, 102, 111–151 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Goldfarb.

Additional information

Research supported by the Presidential Fellowship of Columbia University.

Research supported in part by NSF Grant DMS 01-04282, DOE Grant DE-FG02-92EQ25126 and DNR Grant N00014-03-0514.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L., Goldfarb, D. Interior-point 2-penalty methods for nonlinear programming with strong global convergence properties. Math. Program. 108, 1–36 (2006). https://doi.org/10.1007/s10107-005-0701-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-005-0701-5

Keywords

Mathematics Subject Classification (2000)