Abstract
We propose two line search primal-dual interior-point methods for nonlinear programming that approximately solve a sequence of equality constrained barrier subproblems. To solve each subproblem, our methods apply a modified Newton method and use an ℓ2-exact penalty function to attain feasibility. Our methods have strong global convergence properties under standard assumptions. Specifically, if the penalty parameter remains bounded, any limit point of the iterate sequence is either a Karush-Kuhn-Tucker (KKT) point of the barrier subproblem, or a Fritz-John (FJ) point of the original problem that fails to satisfy the Mangasarian-Fromovitz constraint qualification (MFCQ); if the penalty parameter tends to infinity, there is a limit point that is either an infeasible FJ point of the inequality constrained feasibility problem (an infeasible stationary point of the infeasibility measure if slack variables are added) or a FJ point of the original problem at which the MFCQ fails to hold. Numerical results are given that illustrate these outcomes.
Similar content being viewed by others
References
Argáez, M., Tapia, R.A.: On the global convergence of a modified augmented Lagrangian linesearch interior-point Newton method for Nonlinear Programming. J. Optim. Theory Appl., 114, 1–25 (2002)
Bakhtiari, S., Tits, A.L.: A Simple primal-dual feasible interior-point method for nonlinear programming with monotone descent. Comput. Optim. Appl., 25, 17–38 (2003)
Benson, H.Y., Shanno, D.F., Vanderbei, R.J.: Interior-point methods for nonconvex nonlinear programming: Filter methods and merit functions. Comput. Optim. Appl., 23, 257–272
Benson, H.Y., Shanno, D.F., Vanderbei, R.J.: Interior-point methods for nonconvex nonlinear programming: Jamming and comparative numerical testing. Math. Programming, 99, 35–48 (2004)
Burke, J.V., Han, S.P.: A robust sequential quadratic programming method. Math. Programming, 43, 277–303 (1989)
Byrd, R.H.: Robust trust-region method for constrained optimization. Paper presented at the SIAM Conference on Optimization, Houston, TX, 1987
Byrd, R.H., Gilbert, J.C., Nocedal, J.: A trust region method based on interior point techniques for nonlinear programming. Math. Programming, 89, 149–185 (2000)
Byrd, R.H., Hribar, M.E., Nocedal, J.: An interior point algorithm for large-scale nonlinear programming. SIAM J. Optim., 9, 877–900 (1999)
Byrd, R.H., Liu, G., Nocedal, J.: On the local behavior of an interior point method for nonlinear programming. In D. F. Griffiths and D. J. Higham, editors, Numerical Analysis 1997, pp. 37–56. Addison-Wesley Longman, Reading, MA, 1997
Byrd, R.H., Marazzi, M., Nocedal, J.: On the convergence of Newton iterations to non-stationary points. Math. Programming, 99, 127–148 (2004)
Byrd, R.H., Nocedal, J., Waltz, A.: Feasible interior methods using slacks for nonlinear optimization. Comput. Optim. Appl., 26, 35–61 (2003)
Conn, A.R., Gould, N.I.M., Orban, D., Ph. Toint, L.: A primal-dual trust region algorithm for non-convex nonlinear programming. Math. Programming, 87, 215–249 (2000)
Conn, A.R., Gould, N.I.M., Ph. Toint, L.: A primal-dual algorithm for minimizing a non-convex function subject to bound and linear equality constraints. In Nonlinear optimization and related topics (Erice, 1998), Kluwer Acad. Publ., Dordrecht, pp. 15–49, 2000
Dennis, J.E., Heinkenschloss, M., Vicente, L.N.: Trust-region interior-point SQP algorithms for a class of nonlinear programming problems. SIAM J. Control Optim., 36, 1750–1794 (1998)
Durazzi, C., Ruggiero, V.: Global convergence of the Newton interior-point method for nonlinear programming. J. Optim. Theory Appl., 120, 199–208 (2004)
El-Bakry, A.S., Tapia, R.A., Tsuchiya, T., Zhang, Y.: On the formulation and theory of the Newton interior-point method for nonlinear programming. J. Optim. Theory Appl., 89, pp 507–541 (1996)
Fiacco, A.V., McCormick, G.P.: Nonlinear programming: Sequential Unconstrained Minimization Techniques. Classics Appl. Math. 4, SIAM, Philadelphia, PA, 1990.
Fletcher, R., Gould, N.I.M., Leyffer, S., Ph. Toint, L., Wächter, A.: Global convergence of a trust-region SQP-filter algorithm for general nonlinear programming. SIAM J. Optim., 13, 635–659 (2002)
Fletcher, R., Leyffer, S.: Nonlinear Programming without a penalty function. Math. Programming, 91, 239–269 (2002)
Fletcher, R., Leyffer, S., Ph. Toint, L.: On the global convergence of a filter-SQP algorithm. SIAM J. Optim., 13, 44–59 (2002)
Forsgren, A.: Inertia-controlling factorizations for optimization algorithms. Appl. Numer. Math., 43, 91–107 (2002)
Forsgren, A., Gill, P.E.: Primal-dual interior method for nonconvex nonlinear programming. SIAM J. Optim., 8, 1132–1152 (1998)
Forsgren, A., Gill, P.E., Wright, M.H.: Interior methods for nonlinear optimization. SIAM Rev., 44, 525–597 (2002)
Gay, D.M., Overton, M.L., Wright, M.H.: A primal-dual interior method for nonconvex nonlinear programming. In Advances in Nonlinear Programming (Beijing, 1996), Y. Yuan, ed., Kluwer Acad. Publ., Dordrecht, pp. 31–56, 1998
Gertz, E.M., Gill, P.E.: A primal-dual trust region algorithm for nonlinear optimization. Math. Programming, 100, 49–94 (2004)
Goldfarb, D., Polyak, R., Scheinberg, K., Yuzefovich, I.: A modified barrier-augmented Lagrangian method for constrained minimization. Comput. Optim. Appl., 14, 55–74 (1999)
Golub, G.H., Van Loan, C.F.: Matrix computations. 3rd ed., The Johns Hopkins Univ. Press, Baltimore, 1996.
Gould, N.I.M., Orban, D., Sartenaer, A., Ph. Toint, L.: Superlinear convergence of primal-dual interior point algorithms for nonlinear programming. SIAM J. Optim., 11, 974–1002 (2001)
Gould, N.I.M., Orban, D., Ph. Toint, L.: An interior-point l1-penalty method for nonlinear optimization. RAL-TR-2003-022, Computational Science and Engineering Department, Rutherford Appleton Laboratory, Chilton, Oxfordshire, England, 2003.
Gonzaga, C.C., Karas, E., Vanti, M.: A globally convergent filter method for nonlinear programming. SIAM J. Optim., 14, 646–669 (2003)
Griva, I., Shanno, D.F., Vanderbei, R.J.: Convergence analysis of a primal-dual interior-point method for nonlinear programming. Optimization Online ( http://www.optimization-online.org/DB_HTML/2004/07/913.html), July, 2004.
Hock, W., Schittkowski, K.: Tests examples for nonlinear programming codes. volume 187 of Lecture Notes in Economics and Mathematical Systems. Springer-Verlag, 1981.
Liu, X., Sun, J.: A robust primal-dual interior point algorithm for nonlinear programs. SIAM J. Optim., 14, pp 1163–1186 (2004)
Liu, X., Sun, J.: Global convergence analysis of line search interior point methods for nonlinear programming without regularity assumptions. J. Optim. Theory Appl., to appear.
Mayne, D.Q., Polak, E.: Feasible direction algorithms for optimization problems with equality and inequality constraints. Math. Programming, 11, 67–80 (1976)
Moguerza, J.M., Prieto, F.J.: An augmented Lagrangian interior-point method using directions of negative curvature. Math. Programming, 95, 573–616 (2003)
Omojokun, E.O.: Trust region algorithms for nonlinear equality and inequality constraints. PhD thesis, Department of Computer Science, University of Colorado, Boulder, 1989.
Shanno, D.F., Vanderbei, R.J.: Interior-point methods for nonconvex nonlinear programming: orderings and high-order methods. Math. Programming, 87, 303–316 (2000)
Sporre, G., Forsgren, A.: Relations between divergence of multipliers and convergence to infeasible points in primal-dual interior methods for nonconvex nonlinear programming. Tech. Report TRITA-MAT-02-OS7, Department of Mathematics, Royal Institute of Technology (KTH), Stockholm, Sweden, 2002.
Tits, A.L., Wächter, A., Bakhtiari, S., Urban, T.J., Lawrence, C.T.: A primal-dual interior-point method for nonlinear programming with strong global and local convergence properties. SIAM J. Optim., 14, 173–199 (2003)
Tseng, P.: A convergent infeasible interior-point trust-region method for constrained minimization. SIAM J. Optim., 13, 432–469 (2002)
Ulbrich, M., Ulbrich, S., Vicente, L.N.: A globally convergent primal-dual interior-point filter method for nonlinear programming. Math. Programming, 100, 379–410 (2004)
Vanderbei, R.J., Shanno, D.F.: An interior-point algorithm for nonconvex nonlinear programming. Comput. Optim. Appl., 13, 231–252 (1999)
Wächter, A., Biegler, L.T.: Failure of global convergence for a class of interior point methods for nonlinear programming. Math. Programming, 88, 565–574 (2000)
Wächter, A., Biegler, L.T.: Line search filter methods for nonlinear programming: Motivation and global convergence. Res. Report RC 23036, IBM T. J. Watson Research Center, Yorktown, accepted by SIAM J. Optim., 2004.
Wächter, A., Biegler, L.T.: Line search filter methods for nonlinear programming: Local convergence. Res. Report RC 23033, IBM T. J. Watson Research Center, Yorktown, accepted by SIAM J. Optim., 2004.
Wächter, A. Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Res. Report RC 23149, IBM T. J. Watson Research Center, Yorktown, accepted by Math. Programming, 2004.
Waltz, R.A., Morales, J.L., Nocedal, J., Orban, D.: An Interior Algorithm for Nonlinear Optimization that Combines Line Search and Trust Region Steps. Tech. Report, Optimization Technology Center, Northwestern University, Evanston, IL, 2003, to appear in Math. Programming.
Yamashita, H.: A globally convergent primal-dual interior-point method for constrained optimization. Optim. Methods Softw., 10, 443–469 (1998)
Yamashita, H., Yabe, H.: An interior point method with a primal-dual quadratic barrier penalty function for nonlinear optimizaiton. SIAM J. Optim., 14, 479–499 (2003)
Yamashita, H., Yabe, H., Tanabe, T.: A globally and superlinearly convergent primal-dual interior point trust region method for large scale constrained optimization. Math. Programming, 102, 111–151 (2004)
Author information
Authors and Affiliations
Corresponding author
Additional information
Research supported by the Presidential Fellowship of Columbia University.
Research supported in part by NSF Grant DMS 01-04282, DOE Grant DE-FG02-92EQ25126 and DNR Grant N00014-03-0514.
Rights and permissions
About this article
Cite this article
Chen, L., Goldfarb, D. Interior-point ℓ2-penalty methods for nonlinear programming with strong global convergence properties. Math. Program. 108, 1–36 (2006). https://doi.org/10.1007/s10107-005-0701-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10107-005-0701-5
Keywords
- Constrained optimization
- nonlinear programming
- primal-dual interior-point method
- global convergence
- penalty-barrier method
- modified Newton method