Abstract
Submodular functions often arise in various fields of operations research including discrete optimization, game theory, queueing theory and information theory. In this survey paper, we give overview on the fundamental properties of submodular functions and recent algorithmic devolopments of their minimization.
Similar content being viewed by others
References
Anglès d’Auriac, J.-C.: Computing the Potts free energy and submodular functions. New Optimization Algorithms in Physics. Hartmann, A.K., Rieger, H. (eds.) pp.101–117, Wiley, NewYork (2004)
Anglès d’Auriac J.-C., Iglói F., Preissmann M. and Sebő A. (2002). Optimal cooperation and submodularity for computing Potts’ partition functions with a large number of states. J. Phys. Ser. A 35: 6973–6983
Bertsimas D. and Niño-Mora J. (1996). Conservation laws, extended polymatroids and multiarmed bandit problems; a polyhedral approach to indexable systems. Math. Oper. Res. 21: 257–306
Bixby R.E., Cunningham W.H. and Topkis D.M. (1985). Partial order of a polymatroid extreme point. Math. Oper. Res. 10: 367–378
Bouchet A. (1987). Greedy algorithm and symmetric matroids. Math. Program. 38: 147–159
Bouchet A. and Cunningham W.H. (1995). Delta-matroids, jump systems and bisubmodular polyhedra. SIAM J. Discrete Math. 8: 17–32
Chandrasekaran R. and Kabadi S.N. (1988). Pseudomatroids. Discrete Math. 71: 205–217
Mitrani I. and Coffman E.G. (1980). A characterization of waiting time performance realizable by single-server queues. Oper. Res. 28: 810–821
Cover T.M. (1975). A proof of the data compression theorem of Slepian and Wolf for ergodic sources. IEEE Trans. Inform. Theory IT 21: 226–228
Cover T.M. and Thomas J.A. (1991). Elements of Information Theory. Wiley, Newyork
Cunningham W.H. (1984). Testing membership in matroid polyhedra. J. Combin. Theory Ser. B 36: 161–188
Cunningham W.H. (1985). On submodular function minimization. Combinatorica 5: 185–192
Cunningham W.H. (2002). Matching, matroids and extensions. Math. Program. 91: 515–542
Dress A.W.M. and Havel T.F. (1986). Some combinatorial properties of discriminants in metric vector spaces. Adv. Math. 62: 285–312
Dress A.W. M. and Wenzel W. (1992). Valuated matroids. Adv. Math. 93: 214–250
Edelsbrunner H. and Guibas L.J. (1989). Topologically sweeping an arrangement. J. Comput. Syst. Sci. 38: 165–194
Edmonds, J.: Submodular functions, matroids, and certain polyhedra. In: Guy, R., Hanani, H., Sauer, N., Schönheim, J. (eds.) Combinatorial Structures and Their Applications. Gordon and Breach (1970)
Edmonds J. and Karp R.M. (1972). Theoretical improvements in algorithmic efficiency for network flow problems. J. ACM 19: 248–264
Federgruen A. and Groenevelt H. (1988). Characterization and optimization of achievable performance in general queueing systems. Oper. Res. 36: 733–741
Fleiner B. (2005). Detachment of vertices of graphs preserving edge-connectivity. SIAM J. Discrete Math. 18: 581–591
Fleischer L. (2000). Recent progress in submodular function minimization. OPTIMA 64: 1–11
Fleischer, L., Iwata, S.: Improved algorithms for submodular function minimization and submodular flow. Proceedings of the 32nd ACM Symposium on Theory of Computing 107–116 (2000)
Fleischer L. and Iwata S. (2003). A push-relabel framework for submodular function minimization and applications to parametric optimization. Discrete Appl. Math. 131: 311–322
Fleischer L.,, Iwata S. and McCormick S.T. (2002). A faster capacity scaling algorithm for minimum cost submodular flow. Math. Programming 92: 119–139
Frank A. (1982). An algorithm for submodular functions on graphs. Ann. Discrete Math. 16: 97–120
Frank A. (1993). Submodular functions in graph theory. Discrete Math. 111: 231–241
Frank A. (1993). Applications of submodular functions. In: Walker, K. (eds) Surveys in Combinatorics., pp 85–136. Cambridge University Press, Cambridge
Fujishige S. (1978). Polymatroidal dependence structure of a set of random variables. Inform. Contr. 39: 55–72
Fujishige S. (1980). Lexicographically optimal base of a polymatroid with respect to a weight vector. Math. Oper. Res. 5: 186–196
Fujishige S. (1984). Theory of submodular programs—A Fenchel-type min-max theorem and subgradients of submodular functions. Math. Programming 29: 142–155
Fujishige S. (1984). Submodular systems and related topics. Math. Programming Stud. 22: 113–131
Fujishige S. (1997). A min-max theorem for bisubmodular polyhedra. SIAM J. Discrete Math. 10: 294–308
Fujishige S. (2003). Submodular function minimization and related topics. Optim. Methods Softw. 18: 169–180
Fujishige, S.: Submodular Functions and Optimization, Elsevier (2005)
Fujishige S. and Iwata S. (2006). Bisubmodular function minimization. SIAM J. Discrete Math. 19: 1065–1073
Fujishige S. and Zhang X. (1992). New algorithms for the intersection problem of submodular systems. Japan. J. Indust. Appl. Math. 9: 369–382
Gallo G., Grigoriadis M.D. and Tarjan R.E. (1989). A fast parametric network flow algorithm and applications. SIAM J. Comput. 18: 30–55
Goldberg A.V. and Tarjan R.E. (1988). A new approach to the maximum flow problem. J. ACM 35: 921–940
Grötschel M., Lovász L. and Schrijver A. (1981). The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1: 169–197
Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer Heidelberg (1988)
Hoppe B. and Tardos É (2000). The quickest transshipment problem. Math. Oper. Res. 25: 36–62
Itoko, T., Iwata, S.:Computational geometric approach to submodular function minimization for multiclass queueing systems. Technical Report METR 2005-29, University of Tokyo, October (2005)
Iwata S. (1997). A capacity scaling algorithm for convex cost submodular flows. Math. Programming 76: 299–308
Iwata S. (2002). A fully combinatorial algorithm for submodular function minimization. J. Combin. Theory, Ser. B 84: 203–212
Iwata S. (2003). A faster scaling algorithm for minimizing submodular functions. SIAM J. Comput. 32: 833–840
Iwata S., Fleischer L and Fujishige S. (2001). A combinatorial strongly polynomial algorithm for minimizing submodular functions. J. ACM 48: 761–777
Iwata S., McCormick S.T. and Shigeno M. (2005). A strongly polynomial cut canceling algorithm for minimum cost submodular flow. SIAM J. Discrete Math. 19: 304–320
Iwata S., Murota K. and Shigeno M. (1997). A fast parametric submodular intersection algorithm for strong map sequences. Math. Oper. Res. 22: 803–813
Jordán T. and Szigeti Z. (2003). Detachments preserving local edge-connectivity of graphs. SIAM J. Discrete Math. 17: 72–87
Khachiyan L.G. (1979). A polynomail algorithm in linear programming. Soviet Math Dokl. 20: 191–194
Korte B. and Vygen J. (2000). Combinatorial Optimization—Theory and Algorithms. Springer, Berlin
Lovász, L. Submodular functions and convexity. Mathematical Programming—The State of the Art. Bachem A., Grötschel M., Korte B.(eds.) pp.235–257 Springer, Heidelberg (1983)
McCormick, S.T.: Submodular function minimization. In: Aardal, K., Nemhauser, G., Weismantel, R. (eds.) Discrete Optimization, Handbooks in Operations Research, vol. 12, Elsevier (2005)
McCormick, S.T., Fujishige, S.: Better algorithms for bisubmodular function minimization (2005)
Megiddo N. (1974). Optimal flows in networks with multiple sources and sinks. Math. Programming 7: 97–107
Megiddo N. (1979). Combinatorial optimization with rational objective functions. Math. Oper. Res. 4: 414–424
Megiddo N. (1983). applying parallel computation algorithms in the design of serial algorithms. J. ACM 30: 852–865
Murota K. (1996). Convexity and Steinitz’s exchange property. Adv. Math. 124: 272–311
Murota K. (1998). Discrete convex analysis. Math. Programming 83: 313–371
Murota, K.: Discrete Convex Analysis SIAM (2003)
Nagamochi H. and Ibaraki T. (1992). Computing edge-connectivity of multigraphs and capacitated graphs. SIAM J. Discrete Math. 5: 54–66
Nagamochi H. and Ibaraki T. (1998). A note on minimizing submodular functions. Inform. Process. Lett. 67: 239–244
Nagano, K.: A strongly polynomial algorithm for line search in submodular polyhedra. Technical Report METR 2004-33, University of Tokyo, June 2004
Nash-Williams C.St.J.A. (1985). Connected detachments of graphs and generalized Euler trails. J. London Math. Soc. 31: 17–29
Nash-Williams C.St.J.A. (1991). Another proof of a theorem concerning detachments of graphs. Europ. J. Combinatorics 12: 245–247
Nash-Williams C.St.J.A. (1995). Strongly connected mixed graphs and connected detachments of graphs. J. Combin. Math. Combin. Comput. 19: 33–47
Nash-Williams C.St.J.A. (1995). A direct proof of a theorem on detachments of finite graphs. J. Combin. Math. Combin. Comput. 19: 314–318
Queyranne M. (1993). Structure of a simple scheduling polyhedra. Math. Programming 58: 263–285
Queyranne M. (1998). Minimizing symmetric submodular functions. Math. Programming 82: 3–12
Rizzi, R.: On minimizing symmetric set functions. 20, 445–450 (2000)
Schrijver A. (2000). A combinatorial algorithm minimizing submodular functions in strongly polynomial time. J. Combin. Theory Ser. B 80: 346–355
Schrijver A. (2003). Combinatorial Optimization—Polyhedra and Efficiency. Springer, Berlin
Shanthikumar J.G. and Yao D.D. (1992). Multiclass queueing systems: polymatroidal structure and optimal scheduling control. Oper. Res. 40: S293–S299
Shapley L.S. (1971). Cores of convex games. Int. J. Game Theory 1: 11–26
Slepian D. and Wolf J.K. (1973). Noiseless coding with of correlated information sources. IEEE Trans. Inform. Theory IT19: 471–480
Vygen J. (2003). A note on Schrijver’s submodular function minimization algorithm. J. Combin. Theory Ser. B 88: 399–402
Whitney H. (1935). On the abstract properties of linear dependence. Amer. J. Math. 57: 509–533
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Iwata, S. Submodular function minimization. Math. Program. 112, 45–64 (2008). https://doi.org/10.1007/s10107-006-0084-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10107-006-0084-2