Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Interpretable deep learning: interpretation, interpretability, trustworthiness, and beyond

  • Survey Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

Deep neural networks have been well-known for their superb handling of various machine learning and artificial intelligence tasks. However, due to their over-parameterized black-box nature, it is often difficult to understand the prediction results of deep models. In recent years, many interpretation tools have been proposed to explain or reveal how deep models make decisions. In this paper, we review this line of research and try to make a comprehensive survey. Specifically, we first introduce and clarify two basic concepts—interpretations and interpretability—that people usually get confused about. To address the research efforts in interpretations, we elaborate the designs of a number of interpretation algorithms, from different perspectives, by proposing a new taxonomy. Then, to understand the interpretation results, we also survey the performance metrics for evaluating interpretation algorithms. Further, we summarize the current works in evaluating models’ interpretability using “trustworthy” interpretation algorithms. Finally, we review and discuss the connections between deep models’ interpretations and other factors, such as adversarial robustness and learning from interpretations, and we introduce several open-source libraries for interpretation algorithms and evaluation approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. The subtle differences among interpretation, explanation, and attribution are not considered in this paper, and we use them interchangeably.

  2. Without any limits, even a rule-based model may be too complex for a human to understand the model [107, 141]. This is also the motivation of several works that pursue the sparsity of explanation results [137].

  3. We also note that whether the usage of deep models improves the recommendation system is an open discussion [42], but this is out of the scope of this survey.

  4. https://github.com/sicara/tf-explain.

  5. https://github.com/pytorch/captum.

  6. https://github.com/PaddlePaddle/InterpretDL.

  7. https://github.com/interpretml/interpret.

  8. https://github.com/Trusted-AI/AIX360.

  9. https://github.com/PAIR-code/lit.

References

  1. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: large-scale machine learning on heterogeneous systems. Software available from tensorflow.org

  2. Abnar S, Zuidema WH (2020) Quantifying attention flow in transformers. In: Jurafsky D, Chai J, Schluter N, Tetreault JR (eds) Proceedings of the 58th annual meeting of the association for computational linguistics, ACL. Association for Computational Linguistics

  3. Adebayo J, Gilmer J, Muelly M, Goodfellow IJ, Hardt M, Kim B (2018) Sanity checks for saliency maps. In: Bengio S, Wallach HM, Larochelle H, Grauman K, Cesa-Bianchi N, Garnett R (eds) Advances in neural information processing systems 31: annual conference on neural information processing systems 2018 (NeurIPS 2018), December 3–8, 2018, Montréal, Canada, pp 9525–9536 (2018)

  4. Adebayo J, Muelly M, Liccardi I, Kim B (2020) Debugging tests for model explanations. In: Larochelle H, Ranzato M, Hadsell R, Balcan M-F, Lin H-T (eds) Advances in neural information processing systems 33: annual conference on neural information processing systems 2020 (NeurIPS 2020), December 6–12, 2020

  5. Agarwal R, Melnick L, Frosst N, Zhang X, Lengerich BJ, Caruana R, Hinton GE (2021) Neural additive models: interpretable machine learning with neural nets. In: Ranzato M, Beygelzimer A, Dauphin YN, Liang P, Vaughan JW (eds) Advances in neural information processing systems 34: annual conference on neural information processing systems 2021 (NeurIPS 2021), December 6–14, 2021, pp 4699–4711 (2021)

  6. Ahern I, Noack A, Guzman-Nateras L, Dou D, Li B, Huan J (2019) Normlime: a new feature importance metric for explaining deep neural networks. CoRR, arXiv:1909.04200

  7. Ahn J, Kwak S (2018) Learning pixel-level semantic affinity with image-level supervision for weakly supervised semantic segmentation. In: 2018 IEEE conference on computer vision and pattern recognition (CVPR 2018), Salt Lake City, UT, USA, June 18–22, 2018. Computer Vision Foundation/IEEE Computer Society, pp 4981–4990

  8. Alvarez-Melis D, Jaakkola TS (2018) On the robustness of interpretability methods. CoRR arXiv:1806.08049

  9. Ancona M, Ceolini E, Öztireli C, Gross M (2018) Towards better understanding of gradient-based attribution methods for deep neural networks. In: 6th International conference on learning representations (ICLR 2018), Vancouver, BC, Canada, April 30–May 3, 2018, conference track proceedings. OpenReview.net

  10. Andrychowicz M, Baker B, Chociej M, Józefowicz R, McGrew B, Pachocki J, Petron A, Plappert M, Powell G, Ray A, Schneider J, Sidor S, Tobin J, Welinder P, Weng L, Zaremba W (2020) Learning dexterous in-hand manipulation. Int J Robot Res 39(1):66

    Article  Google Scholar 

  11. Antorán J, Bhatt U, Adel T, Weller A, Hernández-Lobato JM (2021) Getting a CLUE: a method for explaining uncertainty estimates. In: 9th International conference on learning representations (ICLR 2021), virtual event, Austria, May 3–7, 2021. OpenReview.net

  12. André A, Barbara H (2019) On the computation of counterfactual explanations—a survey. CoRR, arXiv:1911.07749 (2019)

  13. Arulkumaran K, Deisenroth MP, Brundage M, Bharath AA (2017) Deep reinforcement learning: a brief survey. IEEE Signal Process Mag 34(6):26–38

    Article  Google Scholar 

  14. Atanasova P, Simonsen JG, Lioma C, Augenstein I (2020) Generating fact checking explanations. In: Jurafsky D, Chai J, Schluter N, Tetreault JR (eds) Proceedings of the 58th annual meeting of the association for computational linguistics (ACL). Association for Computational Linguistics

  15. Atrey A, Clary K, Jensen DD (2020) Exploratory not explanatory: counterfactual analysis of saliency maps for deep reinforcement learning. In: 8th International conference on learning representations (ICLR 2020), Addis Ababa, Ethiopia, April 26–30, 2020. OpenReview.net

  16. Bach S, Binder A, Montavon G, Klauschen F, Müller K-R, Samek W (2015) On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 6:66

    Google Scholar 

  17. Bahdanau D, Cho K, Bengio Y (2015) Neural machine translation by jointly learning to align and translate. In: Bengio Y, LeCun Y (eds) International conference on learning representations

  18. Bajaj M, Chu L, Xue ZY, Pei J, Wang L, Lam PC-H, Zhang Y (2021) Robust counterfactual explanations on graph neural networks. In: Ranzato MA, Beygelzimer A, Dauphin YN, Liang P, Vaughan JW (eds) Advances in neural information processing systems 34: annual conference on neural information processing systems 2021 (NeurIPS 2021), December 6–14, 2021, virtual, pp 5644–5655

  19. Balabanović M, Shoham Y (1997) Fab: content-based, collaborative recommendation. Commun ACM 6:66

    Article  Google Scholar 

  20. Baldassarre F, Azizpour H (2019) Explainability techniques for graph convolutional networks. CoRR, arXiv:1905.13686

  21. Baldock RJN, Maennel H, Neyshabur B (2021) Deep learning through the lens of example difficulty. In: Ranzato MA, Beygelzimer A, Dauphin YN, Liang P, Vaughan JW (eds) Advances in neural information processing systems 34: annual conference on neural information processing systems 2021 (NeurIPS 2021), December 6–14, 2021, virtual, pp 10876–10889

  22. Bansal N, Agarwal C, Nguyen A (2020) SAM: the sensitivity of attribution methods to hyperparameters. In: 2020 IEEE/CVF conference on computer vision and pattern recognition (CVPR 2020), Seattle, WA, USA, June 13–19, 2020, pp 8670–8680. Computer Vision Foundation/IEEE

  23. Barbalau A, Cosma A, Ionescu RT, Popescu M (2020) A generic and model-agnostic exemplar synthetization framework for explainable AI. In: Hutter F, Kersting K, Lijffijt J, Valera I (eds) Machine learning and knowledge discovery in databases—European conference, ECML PKDD 2020, Ghent, Belgium, September 14–18, 2020, Proceedings, Part II, volume 12458 of lecture notes in computer science. Springer, pp 190–205

  24. Bau D, Zhou B, Khosla A, Oliva A, Torralba A (2017) Network dissection: quantifying interpretability of deep visual representations. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR 2017), Honolulu, HI, USA, July 21–26, 2017. IEEE Computer Society, pp 3319–3327

  25. Bau D, Zhu J-Y, Strobelt H, Zhou B, Tenenbaum JB, Freeman WT, Torralba A (2019) GAN dissection: visualizing and understanding generative adversarial networks. In: 7th International conference on learning representations (ICLR 2019), New Orleans, LA, USA, May 6–9, 2019. OpenReview.net (2019)

  26. Bien J, Tibshirani R (2011) Prototype selection for interpretable classification. Ann Appl Stat 6:66

    MathSciNet  MATH  Google Scholar 

  27. Binder A, Montavon G, Lapuschkin S, Müller K-R, Samek W (2016) Layer-wise relevance propagation for neural networks with local renormalization layers. In: Villa AEP, Masulli P, Rivero AP (eds) Artificial neural networks and machine learning—ICANN 2016—25th international conference on artificial neural networks, Barcelona, Spain, September 6–9, 2016, Proceedings, Part II, volume 9887 of lecture notes in computer science. Springer, pp 63–71

  28. Carlini N, Erlingsson Ú, Papernot N (2019) Distribution density, tails, and outliers in machine learning: metrics and applications. CoRR, arXiv:1910.13427

  29. Carvalho DV, Pereira EM, Cardoso JS (2019) Machine learning interpretability: a survey on methods and metrics. Electronics 6:66

    Google Scholar 

  30. Chakraborty A, Alam M, Dey V, Chattopadhyay A, Mukhopadhyay D (2018) Adversarial attacks and defences: a survey. CoRR, arXiv:1810.00069

  31. Chang C-H, Creager E, Goldenberg A, Duvenaud D (2019) Explaining image classifiers by counterfactual generation. In: 7th International conference on learning representations (ICLR 2019), New Orleans, LA, USA, May 6–9, 2019. OpenReview.net

  32. Chattopadhyay A, Sarkar A, Howlader P, Balasubramanian VN (2018) Grad-CAM++: generalized gradient-based visual explanations for deep convolutional networks. In: 2018 IEEE winter conference on applications of computer vision (WACV 2018), Lake Tahoe, NV, USA, March 12–15, 2018. IEEE Computer Society, pp 839–847

  33. Chefer H, Gur S, Wolf L (2021) Generic attention-model explainability for interpreting bi-modal and encoder-decoder transformers. In: 2021 IEEE/CVF international conference on computer vision (ICCV 2021), Montreal, QC, Canada, October 10–17, 2021. IEEE, pp 387–396

  34. Chefer H, Gur S, Wolf L (2021) Transformer interpretability beyond attention visualization. In: IEEE conference on computer vision and pattern recognition (CVPR 2021), virtual, June 19–25, 2021. Computer Vision Foundation/IEEE, pp 782–791

  35. Chen C, Li O, Tao D, Barnett A, Rudin C, Su J (2019) This looks like that: deep learning for interpretable image recognition. In: Wallach HM, Larochelle H, Beygelzimer A, d’Alché-Buc F, Fox EB, Garnett R (eds) Advances in neural information processing systems 32: annual conference on neural information processing systems 2019 (NeurIPS 2019), December 8–14, 2019, Vancouver, BC, Canada, pp 8928–8939

  36. Chen C, Zhang M, Liu Y, Ma S (2018) Neural attentional rating regression with review-level explanations. In: Champin P-A, Gandon F, Lalmas M, Ipeirotis PG (eds) Proceedings of the 2018 World Wide Web conference on World Wide Web (WWW 2018), Lyon, France, April 23–27, 2018. ACM, pp 1583–1592

  37. Chen X, Liu C, Li B, Lu K, Song D (2017) Targeted backdoor attacks on deep learning systems using data poisoning. CoRR, arXiv:1712.05526

  38. Chen Y, Li B, Yu H, Wu P, Miao C (2021) Hydra: hypergradient data relevance analysis for interpreting deep neural networks. In: Thirty-fifth AAAI conference on artificial intelligence (AAAI 2021), thirty-third conference on innovative applications of artificial intelligence (IAAI 2021), the eleventh symposium on educational advances in artificial intelligence (EAAI 2021), virtual event, February 2–9, 2021. AAAI Press, pp 7081–7089 (2021)

  39. Cheng H-T, Koc L, Harmsen J, Shaked T, Chandra T, Aradhye H, Anderson G, Corrado G, Chai W, Ispir M, Anil R, Haque Z, Hong L, Jain V, Liu X, Shah H (2016) Wide & deep learning for recommender systems. In: Karatzoglou A, Hidasi B, Tikk D, Shalom OS, Roitman H, Shapira B, Rokach L (eds) Proceedings of the 1st workshop on deep learning for recommender systems, DLRS@RecSys 2016, Boston, MA, USA, September 15, 2016. ACM, pp 7–10

  40. Covington P, Adams J, Sargin E (2016) Deep neural networks for youtube recommendations. In: Sen S, Geyer W, Freyne J, Castells P (eds) Proceedings of the 10th ACM conference on recommender systems, Boston, MA, USA, September 15–19, 2016. ACM, pp 191–198

  41. Croce F, Andriushchenko M, Sehwag V, Debenedetti E, Flammarion N, Chiang M, Mittal P, Hein M (2020) Robustbench: a standardized adversarial robustness benchmark. arXiv preprint arXiv:2010.09670

  42. Dacrema MF, Cremonesi P, Jannach D (2019) Are we really making much progress? A worrying analysis of recent neural recommendation approaches. In: Bogers T, Said A, Brusilovsky P, Tikk D (eds) Proceedings of the 13th ACM conference on recommender systems (RecSys 2019), Copenhagen, Denmark, September 16–20, 2019. ACM, pp 101–109

  43. Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) Imagenet: a large-scale hierarchical image database. In: 2009 IEEE computer society conference on computer vision and pattern recognition (CVPR 2009), 20–25 June 2009, Miami, Florida, USA. IEEE Computer Society, pp 248–255

  44. Desai S, Ramaswamy HG (2020) Ablation-CAM: visual explanations for deep convolutional network via gradient-free localization. In: IEEE winter conference on applications of computer vision (WACV 2020), Snowmass Village, CO, USA, March 1–5, 2020. IEEE, pp 972–980 (2020)

  45. Devlin J, Chang M-W, Lee K, Toutanova K (2019) BERT: pre-training of deep bidirectional transformers for language understanding. In: Burstein J, Doran C, Solorio T (eds) Proceedings of the 2019 conference of the North American Chapter of the Association for computational linguistics: human language technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2–7, 2019, Volume 1 (Long and Short Papers). Association for Computational Linguistics, pp 4171–4186

  46. Dong Y, Su H, Zhu J, Zhang B (2017) Improving interpretability of deep neural networks with semantic information. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR 2017), Honolulu, HI, USA, July 21–26, 2017. IEEE Computer Society, pp 975–983

  47. Doshi-Velez F, Kim B (2017) Towards a rigorous science of interpretable machine learning. arXiv preprint arXiv:1702.08608

  48. Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S, Uszkoreit J, Houlsby N (2021) An image is worth 16x16 words: transformers for image recognition at scale. In: 9th International conference on learning representations (ICLR 2021), virtual event, Austria, May 3–7, 2021. OpenReview.net

  49. Erhan D, Bengio Y, Courville A, Vincent P (2009) Visualizing higher-layer features of a deep network. In: 2018 IEEE international conference on machine learning workshops

  50. Etmann C, Lunz S, Maass P, Schönlieb C (2019) On the connection between adversarial robustness and saliency map interpretability. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th international conference on machine learning (ICML 2019), 9–15 June 2019, Long Beach, CA, USA, volume 97 of proceedings of machine learning research (PMLR), pp 1823–1832

  51. Faber L, Moghaddam AK, Wattenhofer R (2020) Contrastive graph neural network explanation. CoRR, arXiv:2010.13663

  52. Feldman V (2020) Does learning require memorization? A short tale about a long tail. In: Makarychev K, Makarychev Y, Tulsiani M, Kamath G, Chuzhoy J (eds) Proceedings of the 52nd annual ACM SIGACT symposium on theory of computing (STOC 2020), Chicago, IL, USA, June 22–26, 2020. ACM, pp 954–959

  53. Feldman V, Zhang C (2020) What neural networks memorize and why: discovering the long tail via influence estimation. In: Larochelle H, Ranzato MA, Hadsell R, Balcan M-F, Lin H-T (eds) Advances in neural information processing systems 33: annual conference on neural information processing systems 2020 (NeurIPS 2020), December 6–12, 2020, virtual

  54. Fong R, Patrick M, Vedaldi A (2019) Understanding deep networks via extremal perturbations and smooth masks. In: 2019 IEEE/CVF international conference on computer vision (ICCV 2019), Seoul, Korea (South), October 27–November 2, 2019. IEEE, pp 2950–2958

  55. Fong RC, Vedaldi A (2017) Interpretable explanations of black boxes by meaningful perturbation. In: IEEE international conference on computer vision (ICCV 2017), Venice, Italy, October 22–29, 2017. IEEE Computer Society, pp 3449–3457

  56. Friedler SA, Roy CD, Scheidegger C, Slack D (2019) Assessing the local interpretability of machine learning models. CoRR, arXiv:1902.03501

  57. Frosst N, Hinton GE (2017) Distilling a neural network into a soft decision tree. In: Besold TR, Kutz O (eds) Proceedings of the first international workshop on comprehensibility and explanation in AI and ML 2017 co-located with 16th international conference of the Italian Association for artificial intelligence (AI*IA 2017), Bari, Italy, November 16th and 17th, 2017, volume 2071 of CEUR workshop proceedings. CEUR-WS.org

  58. Geirhos R, Jacobsen J-H, Michaelis C, Zemel RS, Brendel W, Bethge M, Wichmann FA (2020) Shortcut learning in deep neural networks. Nat Mach Intell 2(11):665–673

    Article  Google Scholar 

  59. Geirhos R, Narayanappa K, Mitzkus B, Thieringer T, Bethge M, Wichmann FA, Brendel W (2021) Partial success in closing the gap between human and machine vision. In: Ranzato MA, Beygelzimer A, Dauphin YN, Liang P, Vaughan JW (eds) Advances in neural information processing systems 34: annual conference on neural information processing systems 2021 (NeurIPS 2021), December 6–14, 2021, virtual, pp 23885–23899

  60. Geirhos R, Rubisch P, Michaelis C, Bethge M, Wichmann FA, Brendel W (2019) Imagenet-trained cnns are biased towards texture; increasing shape bias improves accuracy and robustness. In: 7th International conference on learning representations (ICLR 2019), New Orleans, LA, USA, May 6–9, 2019. OpenReview.net

  61. Ghaeini R, Fern XZ, Tadepalli P (2018) Interpreting recurrent and attention-based neural models: a case study on natural language inference. In: Riloff E, Chiang D, Hockenmaier J, Tsujii J (eds) Proceedings of the 2018 conference on empirical methods in natural language processing. Association for Computational Linguistics

  62. Goh GB, Hodas NO, Vishnu A (2017) Deep learning for computational chemistry. J Comput Chem 38(16):1291–1307

    Article  Google Scholar 

  63. Gomez-Uribe CA, Hunt N (2016) The netflix recommender system: algorithms, business value, and innovation. ACM Trans Manag Inf Syst 6(4):131–1319

    Article  Google Scholar 

  64. Goyal Y, Wu Z, Ernst J, Batra D, Parikh D, Lee S (2019) Counterfactual visual explanations. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th international conference on machine learning (ICML 2019), 9–15 June 2019, Long Beach, CA, USA, volume 97 of proceedings of machine learning research (PMLR), pp 2376–2384

  65. Greydanus S, Koul A, Dodge J, Fern A (2018) Visualizing and understanding Atari agents. In: Dy JG, Krause A (eds) Proceedings of the 35th international conference on machine learning (ICML 2018), Stockholmsmässan, Stockholm, Sweden, July 10–15, 2018, volume 80 of proceedings of machine learning research (PMLR), pp 1787–1796

  66. Grgic-Hlaca N, Redmiles EM, Gummadi KP, Weller A (2018) Human perceptions of fairness in algorithmic decision making: a case study of criminal risk prediction. In: Champin P-A, Gandon F, Lalmas M, Ipeirotis PG (eds) Proceedings of the 2018 World Wide Web conference on World Wide Web (WWW 2018), Lyon, France, April 23–27, 2018. ACM, pp 903–912

  67. Gu J, Yang Y, Tresp V (2018) Understanding individual decisions of cnns via contrastive backpropagation. In: Jawahar CV, Li H, Mori G, Schindler K (eds) Computer vision—ACCV 2018—14th Asian conference on computer vision, Perth, Australia, December 2–6, 2018, revised selected papers, Part III, volume 11363 of lecture notes in computer science. Springer, pp 119–134

  68. Gu T, Dolan-Gavitt B, Garg S (2017) BadNets: identifying vulnerabilities in the machine learning model supply chain. CoRR, arXiv:1708.06733

  69. Guidotti R, Monreale A, Matwin S, Pedreschi D (2019) Black box explanation by learning image exemplars in the latent feature space. In: Brefeld U, Fromont É, Hotho A, Knobbe AJ, Maathuis MH, Robardet C (eds) Machine learning and knowledge discovery in databases—European conference (ECML PKDD 2019), Würzburg, Germany, September 16–20, 2019, proceedings, Part I, volume 11906 of lecture notes in computer science. Springer, pp 189–205

  70. Hendrycks D, Dietterich TG (2019) Benchmarking neural network robustness to common corruptions and perturbations. In: 7th International conference on learning representations (ICLR 2019), New Orleans, LA, USA, May 6–9, 2019. OpenReview.net

  71. Heo J, Joo S, Moon T (2019) Fooling neural network interpretations via adversarial model manipulation. In: Wallach HM, Larochelle H, Beygelzimer A, d’Alché-Buc F, Fox EB, Garnett R (eds) Advances in neural information processing systems 32: annual conference on neural information processing systems 2019 (NeurIPS 2019), December 8–14, 2019, Vancouver, BC, Canada, pp 2921–2932

  72. Herlocker JL, Konstan JA, Riedl J (2000) Explaining collaborative filtering recommendations. In: Kellogg WA, Whittaker S (eds) CSCW 2000, proceeding on the ACM 2000 conference on computer supported cooperative work, Philadelphia, PA, USA, December 2–6, 2000. ACM, pp 241–250 (2000)

  73. Hinton GE, Sabour S, Frosst N (2018) Matrix capsules with EM routing. In: 6th International conference on learning representations (ICLR 2018), Vancouver, BC, Canada, April 30–May 3, 2018, conference track proceedings. OpenReview.net

  74. Hooker S, Erhan D, Kindermans P-J, Kim B (2019) A benchmark for interpretability methods in deep neural networks. In: Wallach HM, Larochelle H, Beygelzimer A, d’Alché-Buc F, Fox EB, Garnett R (eds) Advances in neural information processing systems 32: annual conference on neural information processing systems 2019 (NeurIPS 2019), December 8–14, 2019, Vancouver, BC, Canada, pp 9734–9745

  75. Hua K-L, Hsu C-H, Hidayati SC, Wen-Huang C, Yu-Jen C (2015) Computer-aided classification of lung nodules on computed tomography images via deep learning technique. OncoTargets Ther 6:66

    Google Scholar 

  76. Huang Q, Yamada M, Tian Y, Singh D, Yin D, Chang Y (2020) Graphlime: local interpretable model explanations for graph neural networks. CoRR, arXiv:2001.06216

  77. Ilyas A, Santurkar S, Tsipras D, Engstrom L, Tran B, Madry A (2019) Adversarial examples are not bugs, they are features. In: Wallach HM, Larochelle H, Beygelzimer A, d’Alché-Buc F, Fox EB, Garnett R (eds) Advances in neural information processing systems 32: annual conference on neural information processing systems 2019 (NeurIPS 2019), December 8–14, 2019, Vancouver, BC, Canada, pp 125–136

  78. Islam SR, Eberle W, Ghafoor SK (2020) Towards quantification of explainability in explainable artificial intelligence methods. In: Barták R, Bell E (eds) Proceedings of the thirty-third international Florida artificial intelligence research society conference, originally to be held in North Miami Beach, Florida, USA, May 17–20, 2020. AAAI Press, pp 75–81

  79. Iwana BK, Kuroki R, Uchida S (2019) Explaining convolutional neural networks using softmax gradient layer-wise relevance propagation. In: 2019 IEEE/CVF international conference on computer vision workshops (ICCV Workshops 2019), Seoul, Korea (South), October 27–28, 2019. IEEE, pp 4176–4185

  80. Iyer R, Li Y, Li H, Lewis M, Sundar R, Sycara KP (2018) Transparency and explanation in deep reinforcement learning neural networks. In: Furman J, Marchant GE, Price H, Rossi F (eds) Proceedings of the 2018 AAAI/ACM conference on AI, ethics, and society, AIES 2018, New Orleans, LA, USA, February 02–03, 2018. ACM, pp 144–150

  81. Jacovi A, Goldberg Y (2020) Towards faithfully interpretable NLP systems: How should we define and evaluate faithfulness? In: Jurafsky D, Chai J, Schluter N, Tetreault JR (eds) Proceedings of the 58th annual meeting of the association for computational linguistics (ACL 2020), Online, July 5–10, 2020. Association for Computational Linguistics, pp 4198–4205

  82. Jain S, Wallace BC (2019) Attention is not explanation. In: Burstein J, Doran C, Solorio T (eds) Proceedings of the 2019 conference of the North American Chapter of the Association for computational linguistics: human language technologies, NAACL-HLT. Association for Computational Linguistics

  83. Jo T, Nho K, Saykin AJ (2019) Deep learning in Alzheimer’s disease: diagnostic classification and prognostic prediction using neuroimaging data. CoRR, arXiv:1905.00931

  84. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A et al (2021) Highly accurate protein structure prediction with alphafold. Nature 6:66

    Google Scholar 

  85. Kaelbling LP, Littman ML, Moore AW (1996) Reinforcement learning: a survey. J Artif Intell Res 4:237–285

    Article  Google Scholar 

  86. Khan A, Huerta EA, Zheng H (2021) Interpretable AI forecasting for numerical relativity waveforms of quasi-circular, spinning, non-precessing binary black hole mergers. CoRR, arXiv:2110.06968

  87. Kim B, Wattenberg M, Gilmer J, Cai CJ, Wexler J, Viégas FB, Sayres R (2018) Interpretability beyond feature attribution: quantitative testing with concept activation vectors (TCAV). In: Dy JG, Krause A (eds) Proceedings of the 35th international conference on machine learning (ICML 2018), Stockholmsmässan, Stockholm, Sweden, July 10–15, 2018, volume 80 of Proceedings of machine learning research, pp 2673–2682

  88. Kim J-M, Choe J, Akata Z, Oh SJ (2021) Keep CALM and improve visual feature attribution. In: 2021 IEEE/CVF international conference on computer vision (ICCV 2021), Montreal, QC, Canada, October 10–17, 2021. IEEE, pp 8330–8340

  89. Kim J-H, Choo W, Song HO (2020) Puzzle mix: exploiting saliency and local statistics for optimal mixup. In: Proceedings of the 37th international conference on machine learning (ICML 2020), 13–18 July 2020, Virtual Event, volume 119 of proceedings of machine learning research (PMLR), pp 5275–5285

  90. Koh PW, Ang K-S, Teo HHK, Liang P (2019) On the accuracy of influence functions for measuring group effects. In: Wallach HM, Larochelle H, Beygelzimer A, d’Alché-Buc F, Fox EB, Garnett R (eds) Advances in neural information processing systems 32: annual conference on neural information processing systems 2019 (NeurIPS 2019), December 8–14, 2019, Vancouver, BC, Canada, pp 5255–5265

  91. Koh PW, Liang P (2017) Understanding black-box predictions via influence functions. In: Precup D, Teh YW (eds) Proceedings of the 34th international conference on machine learning (ICML 2017), Sydney, NSW, Australia, 6–11 August 2017, volume 70 of proceedings of machine learning research (PMLR), pp 1885–1894

  92. Kontschieder P, Fiterau M, Criminisi A, Bulò SR (2015) Deep neural decision forests. In: 2015 IEEE international conference on computer vision (ICCV 2015), Santiago, Chile, December 7–13, 2015. IEEE Computer Society, pp 1467–1475

  93. Kumar S, Talukdar PP (2020) NILE: natural language inference with faithful natural language explanations. In: Jurafsky D, Chai J, Schluter N, Tetreault JR (eds) Proceedings of the 58th annual meeting of the association for computational linguistics. Association for Computational Linguistics (ACL)

  94. Lage I, Chen E, He J, Narayanan M, Kim B, Gershman S, Doshi-Velez F (2019) An evaluation of the human-interpretability of explanation. CoRR, arXiv:1902.00006

  95. Lai B, Gong X (2017) Saliency guided end-to-end learning for weakly supervised object detection. In: Sierra C (ed) Proceedings of the twenty-sixth international joint conference on artificial intelligence (IJCAI 2017), Melbourne, Australia, August 19–25, 2017, pp 2053–2059. ijcai.org

  96. Lakkaraju H, Kamar E, Caruana R, Leskovec J (2017) Interpretable & explorable approximations of black box models. CoRR, arXiv:1707.01154

  97. Laugel T, Lesot M-J, Marsala C, Renard X, Detyniecki M (2019) Unjustified classification regions and counterfactual explanations in machine learning. In: Brefeld U, Fromont É, Hotho A, Knobbe AJ, Maathuis MH, Robardet C (eds) Machine learning and knowledge discovery in databases—European conference (ECML PKDD 2019), Würzburg, Germany, September 16–20, 2019, Proceedings, Part II, volume 11907 of lecture notes in computer science. Springer, pp 37–54

  98. LeCun Y, Bengio Y, Hinton GE (2015) Deep learning. Nature 521(7553):436–444

    Article  Google Scholar 

  99. Levine S, Finn C, Darrell T, Abbeel P (2016) End-to-end training of deep visuomotor policies. J Mach Learn Res 17:39:1-39:40

    MathSciNet  MATH  Google Scholar 

  100. Levine S, Pastor P, Krizhevsky A, Ibarz J, Quillen D (2018) Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. Int J Robot Res 37(4–5):421–436

    Article  Google Scholar 

  101. Li B, Qi P, Liu B, Di S, Liu J, Pei J, Yi J, Zhou B (2021) Trustworthy AI: from principles to practices. CoRR, arXiv:2110.01167

  102. Li C, Quan C, Peng L, Qi Y, Deng Y, Wu L (2019) A capsule network for recommendation and explaining what you like and dislike. In: Piwowarski B, Chevalier M, Gaussier É, Maarek Y, Nie J-Y, Scholer F (eds) Proceedings of the 42nd international ACM SIGIR conference on research and development in information retrieval (SIGIR 2019), Paris, France, July 21–25, 2019. ACM, pp 275–284

  103. Li O, Liu H, Chen C, Rudin C (2018) Deep learning for case-based reasoning through prototypes: a neural network that explains its predictions. In: McIlraith SA, Weinberger KQ (eds) Proceedings of the thirty-second AAAI conference on artificial intelligence (AAAI-18), the 30th innovative applications of artificial intelligence (IAAI-18), and the 8th AAAI symposium on educational advances in artificial intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2–7, 2018. AAAI Press, pp 3530–3537

  104. Li X, Xiong H, Huang S, Ji S, Dou D (2021) Cross-model consensus of explanations and beyond for image classification models: an empirical study. CoRR, arXiv:2109.00707

  105. Li Y (2017) Deep reinforcement learning: an overview. CoRR, arXiv:1701.07274

  106. Lin Y-S, Lee W-C, Celik ZB (2021) What do you see? Evaluation of explainable artificial intelligence (XAI) interpretability through neural backdoors. In: Zhu F, Ooi BC, Miao C (eds) KDD ’21: the 27th ACM SIGKDD conference on knowledge discovery and data mining, virtual event, Singapore, August 14–18, 2021. ACM, pp 1027–1035

  107. Lipton ZC (2018) The mythos of model interpretability. Commun ACM 61(10):36–43

    Article  Google Scholar 

  108. Litjens G, Kooi T, Bejnordi BE, Adiyoso Setio AA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88

  109. Liu H, Yin Q, Wang WY (2019) Towards explainable NLP: a generative explanation framework for text classification. In: Korhonen A, Traum DR, Màrquez L (eds) Proceedings of the 57th conference of the association for computational linguistics. Association for Computational Linguistics (ACL)

  110. Lundberg SM, Lee S-I (2017) A unified approach to interpreting model predictions. In: Guyon I, von Luxburg U, Bengio S, Wallach HM, Fergus R, Vishwanathan SVN, Garnett R (eds) Advances in neural information processing systems 30: annual conference on neural information processing systems 2017, December 4–9 (2017), Long Beach, CA, USA, pp 4765–4774

  111. Luo D, Cheng W, Xu D, Yu W, Zong B, Chen H, Zhang X (2020) Parameterized explainer for graph neural network. In: Larochelle H, Ranzato MA, Hadsell R, Balcan M-F, Lin H-T (eds) Advances in neural information processing systems 33: annual conference on neural information processing systems 2020 (NeurIPS 2020), December 6–12, 2020, virtual

  112. Ma Y, Yu D, Wu T, Wang H (2019) Paddlepaddle: an open-source deep learning platform from industrial practice. Front Data Comput 6:66

    Google Scholar 

  113. Mahendran A, Vedaldi A (2015) Understanding deep image representations by inverting them. In: IEEE conference on computer vision and pattern recognition (CVPR 2015), Boston, MA, USA, June 7–12, 2015. IEEE Computer Society, pp 5188–5196

  114. Margeloiu A, Simidjievski N, Jamnik M, Weller A (2020) Improving interpretability in medical imaging diagnosis using adversarial training. CoRR, arXiv:2012.01166

  115. Miller T (2019) Explanation in artificial intelligence: insights from the social sciences. Artif Intell 267:1–38

    Article  MathSciNet  MATH  Google Scholar 

  116. Ming Y, Xu P, Qu H, Ren L (2019) Interpretable and steerable sequence learning via prototypes. In: Teredesai A, Kumar V, Li Y, Rosales R, Terzi E, Karypis G (eds) Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining (KDD 2019), Anchorage, AK, USA, August 4–8, 2019. ACM, pp 903–913

  117. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller MA, Fidjeland A, Ostrovski G, Petersen S, Beattie C, Sadik A, Antonoglou I, King H, Kumaran D, Wierstra D, Legg S, Hassabis D (2015) Human-level control through deep reinforcement learning. Nature 518(7540):529–533

    Article  Google Scholar 

  118. Montavon G, Lapuschkin S, Binder A, Samek W, Müller K-R (2017) Explaining nonlinear classification decisions with deep Taylor decomposition. Pattern Recognit 65:211–222

    Article  Google Scholar 

  119. Montavon G, Samek W, Müller K-R (2018) Methods for interpreting and understanding deep neural networks. Digit Signal Process 73:1–15

    Article  MathSciNet  Google Scholar 

  120. Moraffah R, Karami M, Guo R, Raglin A, Liu H (2020) Causal interpretability for machine learning—problems, methods and evaluation. SIGKDD Explor 22(1):18–33

    Article  Google Scholar 

  121. Mothilal RK, Sharma A, Tan C (2020) Explaining machine learning classifiers through diverse counterfactual explanations. In: Hildebrandt M, Castillo C, Celis LE, Ruggieri S, Taylor L, Zanfir-Fortuna G (eds) FAT* ’20: conference on fairness, accountability, and transparency, Barcelona, Spain, January 27–30, 2020. ACM, pp 607–617

  122. Murdoch WJ, Singh C, Kumbier K, Abbasi-Asl R, Yu B (2019) Interpretable machine learning: definitions, methods, and applications. CoRR, arXiv:1901.04592

  123. Nam W-J, Gur S, Choi J, Wolf L, Lee S-W (2020) Relative attributing propagation: interpreting the comparative contributions of individual units in deep neural networks. In: The thirty-fourth AAAI conference on artificial intelligence (AAAI 2020), the thirty-second innovative applications of artificial intelligence conference (IAAI 2020), the tenth AAAI symposium on educational advances in artificial intelligence, (EAAI 2020), New York, NY, USA, February 7–12, 2020. AAAI Press, pp 2501–2508

  124. Nguyen AM, Dosovitskiy A, Yosinski J, Brox T, Clune J (2016) Synthesizing the preferred inputs for neurons in neural networks via deep generator networks. In: Lee DD, Sugiyama M, von Luxburg U, Guyon I, Garnett R (eds) Advances in neural information processing systems 29: annual conference on neural information processing systems 2016, December 5–10, 2016, Barcelona, Spain, pp 3387–3395

  125. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Köpf A, Yang EZ, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S (2019) Pytorch: an imperative style, high-performance deep learning library. In: Wallach HM, Larochelle H, Beygelzimer A, d’Alché-Buc F, Fox EB, Garnett R (eds) Advances in neural information processing systems 32: annual conference on neural information processing systems 2019, (NeurIPS 2019), December 8–14, 2019, Vancouver, BC, Canada, pp 8024–8035

  126. Pearl J et al (2009) Causal inference in statistics: an overview. Stat Surv 6:66

    MathSciNet  MATH  Google Scholar 

  127. Petsiuk V, Das A, Saenko K (2018) RISE: randomized input sampling for explanation of black-box models. In: British machine vision conference 2018 (BMVC 2018), Newcastle, UK, September 3–6, 2018. BMVA Press, p 151 (2018)

  128. Pleiss G, Zhang T, Elenberg ER, Weinberger KQ (2020) Identifying mislabeled data using the area under the margin ranking. In: Larochelle H, Ranzato MA, Hadsell R, Balcan M-F, Lin H-T (eds) Advances in neural information processing systems 33: annual conference on neural information processing systems 2020 (NeurIPS 2020), December 6–12, 2020, virtual

  129. Plumb G, Al-Shedivat M, Cabrera ÁA, Perer A, Xing EP, Talwalkar A (2020) Regularizing black-box models for improved interpretability. In: Larochelle H, Ranzato MA, Hadsell R, Balcan M-F, Lin H-T (eds) Advances in neural information processing systems 33: annual conference on neural information processing systems 2020 (NeurIPS 2020), December 6–12, 2020, virtual

  130. Plumb G, Molitor D, Talwalkar A (2018) Model agnostic supervised local explanations. In: Bengio S, Wallach HM, Larochelle H, Grauman K, Cesa-Bianchi N, Garnett R (eds) Advances in neural information processing systems 31: annual conference on neural information processing systems 2018 (NeurIPS 2018), December 3–8, 2018, Montréal, Canada, pp 2520–2529

  131. Plumerault A, Borgne HL, Hudelot C (2020) Controlling generative models with continuous factors of variations. In: 8th International conference on learning representations (ICLR 2020), Addis Ababa, Ethiopia, April 26–30, 2020. OpenReview.net

  132. Pope PE, Kolouri S, Rostami M, Martin CE, Hoffmann H (2019) Explainability methods for graph convolutional neural networks. In: IEEE conference on computer vision and pattern recognition (CVPR 2019), Long Beach, CA, USA, June 16–20, 2019. Computer Vision Foundation/IEEE, pp 10772–10781

  133. Preuer K, Klambauer G, Rippmann F, Hochreiter S, Unterthiner T (2019) Interpretable deep learning in drug discovery. In: Samek W, Montavon G, Vedaldi A, Hansen LK, Müller K-R (eds) Explainable AI: interpreting, explaining and visualizing deep learning, volume 11700 of lecture notes in computer science. Springer, pp 331–345

  134. Puiutta E, Veith EMSP (2020) Explainable reinforcement learning: a survey. In: Holzinger A, Kieseberg P, Tjoa AM, Weippl ER (eds) Machine learning and knowledge extraction—4th IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 international cross-domain conference, CD-MAKE 2020, Dublin, Ireland, August 25–28, 2020, proceedings, volume 12279 of lecture notes in computer science. Springer, pp 77–95

  135. Puri N, Verma S, Gupta P, Kayastha D, Deshmukh S, Krishnamurthy B, Singh S (2020) Explain your move: understanding agent actions using specific and relevant feature attribution. In: 8th International conference on learning representations (ICLR 2020), Addis Ababa, Ethiopia, April 26–30, 2020. OpenReview.net

  136. Rajpurkar P, O’Connell C, Schechter A, Asnani N, Li J, Kiani A, Ball RL, Mendelson M, Maartens G, van Hoving DJ et al (2020) Chexaid: deep learning assistance for physician diagnosis of tuberculosis using chest x-rays in patients with HIV. NPJ Digit Med 6:6

    Google Scholar 

  137. Ribeiro MT, Singh S, Guestrin C (2016) “Why should I trust you?”: explaining the predictions of any classifier. In: Krishnapuram B, Shah M, Smola AJ, Aggarwal CC, Shen D, Rastogi R (eds) Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, San Francisco, CA, USA, August 13–17, 2016. ACM, pp 1135–1144

  138. Ribeiro MT, Singh S, Guestrin C (2018) Anchors: high-precision model-agnostic explanations. In: McIlraith SA, Weinberger KQ (eds) Proceedings of the thirty-second AAAI conference on artificial intelligence (AAAI-18), the 30th innovative applications of artificial intelligence (IAAI-18), and the 8th AAAI symposium on educational advances in artificial intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2–7, 2018. AAAI Press, pp 1527–1535

  139. Ricci F, Rokach L, Shapira B (2011) Introduction to recommender systems handbook. In: Ricci F, Rokach L, Shapira B, Kantor PB (eds) Recommender systems handbook. Springer, pp 1–35

  140. Ross AS, Doshi-Velez F (2018) Improving the adversarial robustness and interpretability of deep neural networks by regularizing their input gradients. In: McIlraith SA, Weinberger KQ (eds) Proceedings of the thirty-second AAAI conference on artificial intelligence (AAAI-18), the 30th innovative applications of artificial intelligence (IAAI-18), and the 8th AAAI symposium on educational advances in artificial intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2–7, 2018. AAAI Press, pp 1660–1669

  141. Rudin C (2019) Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat Mach Intell 6:66

    Google Scholar 

  142. Sabour S, Frosst N, Hinton GE (2017) Dynamic routing between capsules. In: Guyon I, von Luxburg U, Bengio S, Wallach HM, Fergus R, Vishwanathan SVN, Garnett R (eds) Advances in neural information processing systems 30: annual conference on neural information processing systems 2017, December 4–9, 2017, Long Beach, CA, USA, pp 3856–3866

  143. Samek W, Binder A, Montavon G, Lapuschkin S, Müller K-R (2017) Evaluating the visualization of what a deep neural network has learned. IEEE Trans Neural Netw Learn Syst 28(11):2660–2673

    Article  MathSciNet  Google Scholar 

  144. Samek W, Montavon G, Lapuschkin S, Anders CJ, Müller K-R (2021) Explaining deep neural networks and beyond: a review of methods and applications. Proc IEEE 109(3):247–278

    Article  Google Scholar 

  145. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2020) Grad-CAM: visual explanations from deep networks via gradient-based localization. Int J Comput Vis 128(2):336–359

    Article  Google Scholar 

  146. Sengupta S, Singh A, Leopold HA, Gulati T, Lakshminarayanan V (2020) Ophthalmic diagnosis using deep learning with fundus images—a critical review. Artif Intell Med 102:101758

    Article  Google Scholar 

  147. Seo S, Huang J, Yang H, Liu Y (2017) Interpretable convolutional neural networks with dual local and global attention for review rating prediction. In: Cremonesi P, Ricci F, Berkovsky S, Tuzhilin A (eds) Proceedings of the eleventh ACM conference on recommender systems (RecSys 2017), Como, Italy, August 27–31, 2017. ACM, pp 297–305

  148. Serrano S, Smith NA (2019) Is attention interpretable? In: Korhonen A, Traum DR, Màrquez L (eds) Proceedings of the 57th conference of the association for computational linguistics. Association for Computational Linguistics (ACL)

  149. Shen Y, Zhou B (2021) Closed-form factorization of latent semantics in gans. In: IEEE conference on computer vision and pattern recognition (CVPR 2021), virtual, June 19–25, 2021. Computer Vision Foundation/IEEE, pp 1532–1540

  150. Shrikumar A, Greenside P, Kundaje A (2017) Learning important features through propagating activation differences. In: Precup D, Teh YW (eds) Proceedings of the 34th international conference on machine learning (ICML 2017), Sydney, NSW, Australia, 6–11 August 2017, volume 70 of proceedings of machine learning research (PMLR), pp 3145–3153

  151. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M, Dieleman S, Grewe D, Nham J, Kalchbrenner N, Sutskever I, Lillicrap TP, Leach M, Kavukcuoglu K, Graepel T, Hassabis D (2016) Mastering the game of go with deep neural networks and tree search. Nature 529(7587):484–489

    Article  Google Scholar 

  152. Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hubert T, Baker L, Lai M, Bolton A, Chen Y, Lillicrap TP, Hui F, Sifre L, van den Driessche G, Graepel T, Hassabis D (2017) Mastering the game of go without human knowledge. Nature 550(7676):354–359

    Article  Google Scholar 

  153. Simonyan K, Vedaldi A, Zisserman A (2014) Deep inside convolutional networks: visualising image classification models and saliency maps. In: Bengio Y, LeCun Y (eds) 2nd International conference on learning representations (ICLR 2014), Banff, AB, Canada, April 14–16, 2014, workshop track proceedings

  154. Singh A, Sengupta S, Lakshminarayanan V (2020) Explainable deep learning models in medical image analysis. J Imaging 6(6):52

    Article  Google Scholar 

  155. Smilkov D, Thorat N, Kim B, Viégas FB, Wattenberg M (2017) Smoothgrad: removing noise by adding noise. CoRR, arXiv:1706.03825

  156. Srinivas S, Fleuret F (2019) Full-gradient representation for neural network visualization. In: Wallach HM, Larochelle H, Beygelzimer A, d’Alché-Buc F, Fox EB, Garnett R (eds) Advances in neural information processing systems 32: annual conference on neural information processing systems 2019 (NeurIPS 2019), December 8–14, 2019, Vancouver, BC, Canada, pp 4126–4135

  157. Strobelt H, Gehrmann S, Behrisch M, Perer A, Pfister H, Rush AM (2019) Seq2seq-vis: a visual debugging tool for sequence-to-sequence models. IEEE Trans Vis Comput Graph 6:66

    Google Scholar 

  158. Strobelt H, Gehrmann S, Pfister H, Rush AM (2018) Lstmvis: a tool for visual analysis of hidden state dynamics in recurrent neural networks. IEEE Trans Vis Comput Graph 6:66

    Google Scholar 

  159. Sun Y, Wang S, Li Y-K, Feng S, Chen X, Zhang H, Tian X, Zhu D, Tian H, Wu H (2019) ERNIE: enhanced representation through knowledge integration. CoRR arXiv:1904.09223

  160. Sundararajan M, Taly A, Yan Q (2017) Axiomatic attribution for deep networks. In: Precup D, Teh YW (eds) Proceedings of the 34th international conference on machine learning (ICML 2017), Sydney, NSW, Australia, 6–11 August 2017, volume 70 of proceedings of machine learning research (PMLR), pp 3319–3328

  161. Swayamdipta S, Schwartz R, Lourie N, Wang Y, Hajishirzi H, Smith NA, Choi Y (2020) Dataset cartography: mapping and diagnosing datasets with training dynamics. In: Webber B, Cohn T, He Y, Liu Y (eds) Proceedings of the 2020 conference on empirical methods in natural language processing (EMNLP 2020), Online, November 16–20, 2020. Association for Computational Linguistics, pp 9275–9293

  162. Tang J, Wang K (2018) Personalized top-n sequential recommendation via convolutional sequence embedding. In: Chang Y, Zhai C, Liu Y, Maarek Y (eds) Proceedings of the eleventh ACM international conference on web search and data mining (WSDM 2018), Marina Del Rey, CA, USA, February 5–9, 2018. ACM, 565–573

  163. Tjoa E, Guan C (2021) A survey on explainable artificial intelligence (XAI): toward medical XAI. IEEE Trans Neural Netw Learn Syst 32(11):4793–4813

    Article  Google Scholar 

  164. Toneva M, Sordoni A, des Combes RT, Trischler A, Bengio Y, Gordon GJ (2019) An empirical study of example forgetting during deep neural network learning. In: 7th International conference on learning representations (ICLR 2019), New Orleans, LA, USA, May 6–9, 2019. OpenReview.net

  165. Tsipras D, Santurkar S, Engstrom L, Turner A, Madry A (2019) Robustness may be at odds with accuracy. In: 7th International conference on learning representations (ICLR 2019), New Orleans, LA, USA, May 6–9, 2019. OpenReview.net

  166. van der Linden I, Haned H, Kanoulas E (2019) Global aggregations of local explanations for black box models. CoRR, arXiv:1907.03039

  167. Verma S, Dickerson JP, Hines K (2020) Counterfactual explanations for machine learning: a review. CoRR, arXiv:2010.10596

  168. Vinyals O, Babuschkin I, Czarnecki WM, Mathieu M, Dudzik A, Chung J, Choi DH, Powell R, Ewalds T, Georgiev P, Oh J, Horgan D, Kroiss M, Danihelka I, Huang A, Sifre L, Cai T, Agapiou JP, Jaderberg M, Vezhnevets AS, Leblond R, Pohlen T, Dalibard V, Budden D, Sulsky Y, Molloy J, Le Paine T, Gülçehre Ç, Wang Z, Pfaff T, Wu Y, Ring R, Yogatama D, Wünsch D, McKinney K, Smith O, Schaul T, Lillicrap TP, Kavukcuoglu K, Hassabis D, Apps C, Silver D (2019) Grandmaster level in starcraft II using multi-agent reinforcement learning. Nature 575(7782):350–354

  169. Voita E, Talbot D, Moiseev F, Sennrich R, Titov I (2019) Analyzing multi-head self-attention: specialized heads do the heavy lifting, the rest can be pruned. In: Korhonen A, Traum DR, Màrquez L (eds) Proceedings of the 57th conference of the Association for Computational Linguistics (ACL 2019), Florence, Italy, July 28–August 2, 2019, Volume 1: Long Papers. Association for Computational Linguistics, pp 5797–5808

  170. Voynov A, Babenko A (2019) RPGAN: gans interpretability via random routing. CoRR, arXiv:1912.10920

  171. Voynov A, Babenko A (2020) Unsupervised discovery of interpretable directions in the GAN latent space. In: Proceedings of the 37th international conference on machine learning (ICML 2020), 13–18 July 2020, virtual event, volume 119 of proceedings of machine learning research (PMLR), pp 9786–9796

  172. Vu MN, Nguyen TDT, Phan N, Gera R, Thai MT (2019) Evaluating explainers via perturbation. CoRR, arXiv:1906.02032

  173. Wachter S, Mittelstadt BD, Russell C (2017) Counterfactual explanations without opening the black box: automated decisions and the GDPR. CoRR, arXiv:1711.00399

  174. Wang H, Wang Z, Du M, Yang F, Zhang Z, Ding S, Mardziel P, Hu X (2020) Score-CAM: score-weighted visual explanations for convolutional neural networks. In: 2020 IEEE/CVF conference on computer vision and pattern recognition (CVPR Workshops 2020), Seattle, WA, USA, June 14–19, 2020. Computer Vision Foundation/IEEE, pp 111–119

  175. Welinder P, Branson S, Mita T, Wah C, Schroff F, Belongie S, Perona P (2010) Caltech-UCSD birds 200. Technical Report CNS-TR-2010-001, California Institute of Technology

  176. Wickramanayake S, Hsu W, Lee M-L (2021) Explanation-based data augmentation for image classification. In: Ranzato MA, Beygelzimer A, Dauphin YN, Liang P, Vaughan JW (eds) Advances in neural information processing systems 34: annual conference on neural information processing systems 2021 (NeurIPS 2021), December 6–14, 2021, virtual, pp 20929–20940

  177. Wiegreffe S, Pinter Y (2019) Attention is not not explanation. In: Inui K, Jiang J, Ng V, Wan X (eds) Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing (EMNLP-IJCNLP). Association for Computational Linguistics

  178. Woo S, Park J, Lee J-Y, Kweon IS (2018) CBAM: convolutional block attention module. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y (eds) Computer vision—ECCV 2018—15th European conference, Munich, Germany, September 8–14, 2018, proceedings, Part VII, volume 11211 of lecture notes in computer science. Springer, pp 3–19

  179. Xu G, Duong TD, Li Q, Liu S, Wang X (2020) Causality learning: a new perspective for interpretable machine learning. CoRR, arXiv:2006.16789

  180. Yang C, Shen Y, Zhou B (2021) Semantic hierarchy emerges in deep generative representations for scene synthesis. Int J Comput Vis 129(5):1451–1466

    Article  Google Scholar 

  181. Yang M, Kim B (2019) Benchmarking attribution methods with relative feature importance

  182. Yao Y, Chen T, Xie G-S, Zhang C, Shen F, Wu Q, Tang Z, Zhang J (2021) Non-salient region object mining for weakly supervised semantic segmentation. In: IEEE conference on computer vision and pattern recognition (CVPR 2021), virtual, June 19–25, 2021. Computer Vision Foundation/IEEE, pp 2623–2632

  183. Yeh C-K, Hsieh C-Y, Suggala AS, Inouye DI, Ravikumar P (2019) On the (in)fidelity and sensitivity of explanations. In: Wallach HM, Larochelle H, Beygelzimer A, d’Alché-Buc F, Fox EB, Garnett R (eds) Advances in neural information processing systems 32: annual conference on neural information processing systems 2019 (NeurIPS 2019), December 8–14, 2019, Vancouver, BC, Canada, pp 10965–10976

  184. Ying Z, Bourgeois D, You J, Zitnik M, Leskovec J (2019) Gnnexplainer: generating explanations for graph neural networks. In: Wallach HM, Larochelle H, Beygelzimer A, d’Alché-Buc F, Fox EB, Garnett R (eds) Advances in neural information processing systems 32: annual conference on neural information processing systems 2019 (NeurIPS 2019), December 8–14, 2019, Vancouver, BC, Canada, pp 9240–9251

  185. Yuan T, Li X, Xiong H, Cao H, Dou D (2021) Explaining information flow inside vision transformers using Markov chain. In: Neural information processing systems XAI4Debugging workshop

  186. Zagoruyko S, Komodakis N (2017) Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer. In: 5th International conference on learning representations (ICLR 2017), Toulon, France, April 24–26, 2017, conference track proceedings. OpenReview.net

  187. Zhang C, Bengio S, Hardt M, Recht B, Vinyals O (2021) Understanding deep learning (still) requires rethinking generalization. Commun ACM 64(3):107–115

    Article  Google Scholar 

  188. Zhang H, Cissé M, Dauphin YN, Lopez-Paz D (2018) Mixup: beyond empirical risk minimization. In: 6th International conference on learning representations (ICLR 2018), Vancouver, BC, Canada, April 30–May 3, 2018, conference track proceedings. OpenReview.net

  189. Zhang J, Bargal SA, Lin Z, Brandt J, Shen X, Sclaroff S (2018) Top-down neural attention by excitation backprop. Int J Comput Vis 126(10):1084–1102

    Article  Google Scholar 

  190. Zhang Q, Cao R, Shi F, Wu YN, Zhu S-C (2018) Interpreting CNN knowledge via an explanatory graph. In: McIlraith SA, Weinberger KQ (eds) Proceedings of the thirty-second AAAI conference on artificial intelligence (AAAI-18), the 30th innovative applications of artificial intelligence (IAAI-18), and the 8th AAAI symposium on educational advances in artificial intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2–7, 2018. AAAI Press, pp 4454–4463

  191. Zhang Q, Wu YN, Zhu S-C (2018) Interpretable convolutional neural networks. In: 2018 IEEE conference on computer vision and pattern recognition (CVPR 2018), Salt Lake City, UT, USA, June 18–22, 2018. Computer Vision Foundation/IEEE Computer Society, pp 8827–8836

  192. Zhang Q, Yang Y, Ma H, Wu YN (2019) Interpreting cnns via decision trees. In: IEEE conference on computer vision and pattern recognition (CVPR 2019), Long Beach, CA, USA, June 16–20, 2019. Computer Vision Foundation/IEEE, pp 6261–6270

  193. Zhang S, Yao L, Sun A, Tay Y (2019) Deep learning based recommender system: a survey and new perspectives. ACM Comput Surv 52(1):51–538

    Google Scholar 

  194. Zhang T, Zhu Z (2019) Interpreting adversarially trained convolutional neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th international conference on machine learning (ICML 2019), 9–15 June 2019, Long Beach, California, USA, volume 97 of proceedings of machine learning research (PMLR), pp 7502–7511

  195. Zhang Y, Chen X (2020) Explainable recommendation: a survey and new perspectives. Found Trends Inf Retr 14(1):1–101

    Article  MathSciNet  Google Scholar 

  196. Zhao G, Zhou B, Wang K, Jiang R, Xu M (2018) Respond-CAM: analyzing deep models for 3d imaging data by visualizations. In: Frangi AF, Schnabel JA, Davatzikos C, Alberola-López C, Fichtinger G (eds) Medical image computing and computer assisted intervention—MICCAI 2018—21st international conference, Granada, Spain, September 16–20, 2018, proceedings, Part I, volume 11070 of lecture notes in computer science. Springer, pp 485–492

  197. Zhou B, Khosla A, Lapedriza À, Oliva A, Torralba A (2016) Learning deep features for discriminative localization. In: 2016 IEEE conference on computer vision and pattern recognition, (CVPR 2016), Las Vegas, NV, USA, June 27–30, 2016. IEEE Computer Society, pp 2921–2929

Download references

Acknowledgements

Funding was provided by National Key R &D Program of China (Grant No. 2021ZD0110303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dejing Dou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Xiong, H., Li, X. et al. Interpretable deep learning: interpretation, interpretability, trustworthiness, and beyond. Knowl Inf Syst 64, 3197–3234 (2022). https://doi.org/10.1007/s10115-022-01756-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-022-01756-8

Keywords