Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Posteriori Error Estimates for Finite Element Exterior Calculus: The de Rham Complex

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

Finite element exterior calculus (FEEC) has been developed over the past decade as a framework for constructing and analyzing stable and accurate numerical methods for partial differential equations by employing differential complexes. The recent work of Arnold, Falk, and Winther includes a well-developed theory of finite element methods for Hodge–Laplace problems, including a priori error estimates. In this work we focus on developing a posteriori error estimates in which the computational error is bounded by some computable functional of the discrete solution and problem data. More precisely, we prove a posteriori error estimates of a residual type for Arnold–Falk–Winther mixed finite element methods for Hodge–de Rham–Laplace problems. While a number of previous works consider a posteriori error estimation for Maxwell’s equations and mixed formulations of the scalar Laplacian, the approach we take is distinguished by a unified treatment of the various Hodge–Laplace problems arising in the de Rham complex, consistent use of the language and analytical framework of differential forms, and the development of a posteriori error estimates for harmonic forms and the effects of their approximation on the resulting numerical method for the Hodge–Laplacian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. M. Ainsworth and J. T. Oden, A posteriori error estimation in finite element analysis, Pure and Applied Mathematics (New York), Wiley-Interscience [John Wiley & Sons], New York, 2000.

  2. A. Alonso, Error estimators for a mixed method, Numer. Math., 74 (1996), pp. 385–395.

  3. D. N. Arnold, Differential complexes and numerical stability, in Proceedings of the International Congress of Mathematicians, Beijing 2002, Volume 1 : Plenary Lectures, 2002.

  4. D. N. Arnold, R. S. Falk, and R. Winther, Finite element exterior calculus, homological techniques, and applications, in Acta Numerica, A. Iserles, ed., vol. 15, Cambridge University Press, 2006, pp. 1–155.

  5. DN Arnold, RS Falk, R Winther (2010) Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Amer. Math. Soc. (N.S.) 47:281–354

  6. I. Babuška and W. C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal., 15 (1978), pp. 736–754.

  7. W. Bangerth and R. Rannacher, Adaptive finite element methods for differential equations, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2003.

  8. R. Beck, R. Hiptmair, R. H. W. Hoppe, and B. Wohlmuth, Residual based a posteriori error estimators for eddy current computation, M2AN Math. Model. Numer. Anal., 34 (2000), pp. 159–182.

  9. A. Bossavit, Whitney forms : A class of finite elements for three-dimensional computations in electromagnetism, IEEE Proceedings, 135, Part A (1988), pp. 493–500.

  10. D. Braess and R. Verfürth, A posteriori error estimators for the Raviart–Thomas element, SIAM J. Numer. Anal., 33 (1996), pp. 2431–2444.

  11. S. C. Brenner and L. R. Scott, The mathematical theory of finite element methods, vol. 15 of Texts in Applied Mathematics, Springer, New York, third ed., 2008.

  12. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991.

  13. C. Carstensen, A posteriori error estimate for the mixed finite element method, Math. Comp., 66 (1997), pp. 465–476.

  14. J. Chen, Y. Xu, and J. Zou, An adaptive edge element methods and its convergence for a saddle-point problem from magnetostatics, Numer. Methods Partial Differential Equations, 28 (2012), pp. 1643–1666.

  15. S. H. Christiansen and R. Winther, Smoothed projections in finite element exterior calculus, Math. Comp., 77 (2008), pp. 813–829.

  16. M. Costabel and A. McIntosh, On Bogovskiĭ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains, Math. Z., 265 (2010), pp. 297–320.

  17. J. Dodziuk, Finite-difference approach to the Hodge theory of harmonic forms, Amer. J. Math., 98 (1976), pp. 79–104.

  18. R. S. Falk and R. Winther, Local bounded cochain projections, Math. Comp., (To appear).

  19. R. Hiptmair, Canonical construction of finite elements, Math. Comp., 68 (1999), pp. 1325–1346.

  20. R. Hiptmair, Finite elements in computational electromagnetism, Acta Numer., 11 (2002), pp. 237–339.

  21. T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin, second ed., 1976. Grundlehren der Mathematischen Wissenschaften, Band 132.

  22. M. G. Larson and A. Målqvist, A posteriori error estimates for mixed finite element approximations of elliptic problems, Numer. Math., 108 (2008), pp. 487–500.

  23. C. Lovadina and R. Stenberg, Energy norm a posteriori error estimates for mixed finite element methods, Math. Comp., 75 (2006), pp. 1659–1674 (electronic).

  24. D. Mitrea, M. Mitrea, and S. Monniaux, The Poisson problem for the exterior derivative operator with Dirichlet boundary condition in nonsmooth domains, Commun. Pure Appl. Anal., 7 (2008), pp. 1295–1333.

  25. D. Mitrea, M. Mitrea, and M.-C. Shaw, Traces of differential forms on Lipschitz domains, the boundary de Rham complex, and Hodge decompositions, Indiana Univ. Math. J., 57 (2008), pp. 2061–2095.

  26. J. E. Pasciak and J. Zhao, Overlapping Schwarz methods in H(curl) on polyhedral domains, J. Numer. Math., 10 (2002), pp. 221–234.

  27. J. Schöberl, Commuting quasi-interpolation operators for mixed finite elements, Tech. Rep. ISC-01-10-MATH, Institute for Scientific Computing, Texas A&M University, 2001.

  28. J. Schöberl, A posteriori error estimates for Maxwell equations, Math. Comp., 77 (2008), pp. 633–649.

  29. R. Verfürth, A posteriori error estimators for the Stokes equations, Numer. Math., 55 (1989), pp. 309–325.

  30. M. Vohralík, A posteriori error estimates for lowest-order mixed finite element discretizations of convection-diffusion-reaction equations, SIAM J. Numer. Anal., 45 (2007), pp. 1570–1599 (electronic).

  31. L. Zhong, L. Chen, S. Shu, G. Wittum, and J. Xu, Convergence and Optimality of adaptive edge finite element methods for time-harmonic Maxwell equations, Math. Comp., (To appear.).

Download references

Acknowledgments

We would like to thank Doug Arnold for helpful discussions concerning Lemma 2 and Gantumur Tsogtgerel for helpful discussions concerning Lemma 6. The work of the first author was partially supported by National Science Foundation Grant DMS-1016094 and by a grant from the Simons Foundation (228205 to Alan Demlow). The work of the second author was partially supported by National Science Foundation Grant DMS-0645604.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Demlow.

Additional information

Communicated by Douglas Arnold.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demlow, A., Hirani, A.N. A Posteriori Error Estimates for Finite Element Exterior Calculus: The de Rham Complex. Found Comput Math 14, 1337–1371 (2014). https://doi.org/10.1007/s10208-014-9203-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-014-9203-2

Keywords

Mathematics Subject Classfication