Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Evaluation of Physiological Control Systems for Rotary Left Ventricular Assist Devices: An In-Vitro Study

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Rotary left ventricular assist devices (LVADs) show weaker response to preload and greater response to afterload than the native heart. This may lead to ventricular suction or pulmonary congestion, which can be deleterious to the patient’s recovery. A physiological control system which optimizes responsiveness of LVADs may reduce adverse events. This study compared eight physiological control systems for LVAD support against constant speed mode. Pulmonary (PVR) and systemic (SVR) vascular resistance changes, a passive postural change and exercise were simulated in a mock circulation loop to evaluate the controller’s ability to prevent suction and congestion and to increase exercise capacity. Three active and one passive control systems prevented ventricular suction at high PVR (500 dyne s cm−5) and low SVR (600 dyne s cm−5) by decreasing LVAD speed (by 200–515 rpm) and by increasing LVAD inflow cannula resistance (up to 1000 dyne s cm−5) respectively. These controllers increased LVAD preload sensitivity (to 0.196–2.415 L min−1 mmHg−1) compared to the other control systems and constant speed mode (0.039–0.069 L min−1 mmHg−1). The same three active controllers increased pump speed (600–800 rpm) and thus LVAD flow by 4.5 L min−1 during exercise which increased exercise capacity. Physiological control systems that prevent adverse events and/or increase exercise capacity may help improve LVAD patient conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. AlOmari, A.-H. H., A. V. Savkin, M. Stevens, D. G. Mason, D. L. Timms, R. F. Salamonsen, and N. H. Lovell. Developments in control systems for rotary left ventricular assist devices for heart failure patients: a review. Physiol. Meas. 34:R1–R27, 2013.

    Article  PubMed  Google Scholar 

  2. Boston, J. R., J. F. Antaki, and M. A. Simaan. Hierarchical control of heart-assist devices. Robot. Autom. Mag. 10(1):54–64, 2003.

    Article  Google Scholar 

  3. Bullister, E., S. Reich, and J. Sluetz. Physiologic control algorithms for rotary blood pumps using pressure sensor input. Artif. Organs. 26:931–938, 2002.

    Article  PubMed  Google Scholar 

  4. Casas, F., N. Ahmed, and A. Reeves. Minimal sensor count approach to fuzzy logic rotary blood pump flow control. ASAIO J. 53:140–146, 2007.

    Article  PubMed  Google Scholar 

  5. Eckberg, D. L., M. Drabinsky, and E. Braunwald. Defective cardiac parasympathetic control in patients with heart disease. N. Engl. J. Med. 285:877–883, 1971.

    Article  CAS  PubMed  Google Scholar 

  6. Epstein, S. E., G. D. Beiser, M. Stampfer, B. F. Robinson, and E. Braunwald. Characterization of the circulatory response to maximal upright exercise in normal subjects and patients with heart disease. Circulation. 35:1049–1062, 1967.

    Article  CAS  PubMed  Google Scholar 

  7. Gaddum, N. R., M. Stevens, E. Lim, J. Fraser, N. Lovell, D. Mason, D. Timms, and R. Salamonsen. Starling-like flow control of a left ventricular assist device: in vitro validation. Artif. Organs. 38:E46–E56, 2014.

    Article  PubMed  Google Scholar 

  8. Giridharan, G. A., and M. Skliar. Control strategy for maintaining physiological perfusion with rotary blood pumps. Artif. Organs. 27:639–648, 2003.

    Article  PubMed  Google Scholar 

  9. Gregory, S. D., M. J. Pearcy, and D. Timms. Passive control of a biventricular assist device with compliant inflow cannulae. Artif. Organs. 36:683–690, 2012.

    Article  PubMed  Google Scholar 

  10. Gregory, S. D., M. Stevens, D. Timms, and M. Pearcy. Replication of the Frank-Starling response in a mock circulation loop. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011:6825–6828, 2011.

    PubMed  Google Scholar 

  11. Klabunde, R. E. Cardiovascular Physiology Concepts. Baltimore: Lippincott Williams & Wilkins, 2010.

    Google Scholar 

  12. Lim, E., R. F. Salamonsen, M. Mansouri, N. Gaddum, D. G. Mason, D. L. Timms, M. C. Stevens, J. Fraser, R. Akmeliawati, and N. H. Lovell. Hemodynamic response to exercise and head-up tilt of patients implanted with a rotary blood pump: a computational modeling study. Artif. Organs. 39:E24–E35, 2015.

    Article  PubMed  Google Scholar 

  13. McClean, D., J. Aragon, A. Jamali, S. Kar, J. Ritzema-Carter, R. Troughton, H. Krum, R. Doughty, W. T. Abraham, J. S. Whiting, and N. Eigler. Noninvasive calibration of cardiac pressure transducers in patients with heart failure: an aid to implantable hemodynamic monitoring and therapeutic guidance. J. Card. Fail. 12:568–576, 2006.

    Article  PubMed  Google Scholar 

  14. Moscato, F., M. Arabia, F. M. Colacino, P. Naiyanetr, G. A. Danieli, and H. Schima. Left ventricle afterload impedance control by an axial flow ventricular assist device: a potential tool for ventricular recovery. Artif. Organs. 34:736–744, 2010.

    Article  PubMed  Google Scholar 

  15. Pauls, J. P., Stevens, M. C., Schummy, E., Tansley, G., Fraser, J. F., Timms, D., Gregory, S.D. In vitro comparison of active and passive physiological control systems for biventricular assist devices. Ann. Biomed. Eng., 2015. doi:10.1007/s10439-015-1425-1.

  16. Reesink, K., A. Dekker, Nagel T. Van Der, C. Beghi, F. Leonardi, P. Botti, Cicco G. De, R. Lorusso, Veen F. Van Der, and J. Maessen. Suction due to left ventricular assist : implications for device control and management. Artif. Organs. 31:542–549, 2007.

    Article  PubMed  Google Scholar 

  17. Rose, E. A., A. J. Moskowitz, M. Packer, J. A. Sollano, D. L. Williams, A. R. Tierney, D. F. Heitjan, P. Meier, D. D. Ascheim, R. G. Levitan, A. D. Weinberg, L. W. Stevenson, P. A. Shapiro, R. M. Lazar, J. T. Watson, D. J. Goldstein, and A. C. Gelijns. The REMATCH trial: rationale, design, and end points. Ann. Thorac. Surg. 67:723–730, 1999.

    Article  CAS  PubMed  Google Scholar 

  18. Salamonsen, R. F., D. G. Mason, and P. J. Ayre. Response of rotary blood pumps to changes in preload and afterload at a fixed speed setting are unphysiological when compared with the natural heart. Artif. Organs. 35:E47–E53, 2011.

    Article  PubMed  Google Scholar 

  19. Salamonsen, R. F., V. Pellegrino, J. F. Fraser, K. Hayes, D. Timms, N. H. Lovell, and C. Hayward. Exercise studies in patients with rotary blood pumps: cause, effects, and implications for Starling-like control of changes in pump flow. Artif. Organs. 37:695–703, 2013.

    Article  PubMed  Google Scholar 

  20. Slaughter, M. S., F. D. Pagani, J. G. Rogers, L. W. Miller, B. Sun, S. D. Russell, R. C. Starling, L. Chen, A. J. Boyle, S. Chillcott, R. M. Adamson, M. S. Blood, M. T. Camacho, K. A. Idrissi, M. Petty, M. Sobieski, S. Wright, T. J. Myers, and D. J. Farrar. Clinical management of continuous-flow left ventricular assist devices in advanced heart failure. J. Hear. Lung Transplantationl Soc. Hear. Transplant. 29:S1–39, 2010.

    Article  Google Scholar 

  21. Stevens, M. C., S. Wilson, A. Bradley, J. Fraser, and D. Timms. Physiological control of dual rotary pumps as a biventricular assist device using a master/slave approach. Artif. Organs. 38:766–774, 2014.

    Article  PubMed  Google Scholar 

  22. Timms, D. L., S. D. Gregory, N. A. Greatrex, M. J. Pearcy, J. F. Fraser, and U. Steinseifer. A compact mock circulation loop for the in vitro testing of cardiovascular devices. Artif. Organs. 35:384–391, 2011.

    Article  PubMed  Google Scholar 

  23. Troughton, R. W., J. Ritzema, N. L. Eigler, I. C. Melton, H. Krum, P. B. Adamson, S. Kar, P. K. Shah, J. S. Whiting, J. T. Heywood, S. Rosero, J. P. Singh, L. Saxon, R. Matthews, I. G. Crozier, and W. T. Abraham. Direct left atrial pressure monitoring in severe heart failure: long-term sensor performance. J. Cardiovasc. Transl. Res. 4:3–13, 2011.

    Article  PubMed  Google Scholar 

  24. Vollkron, M., H. Schima, L. Huber, R. Benkowski, G. Morello, and G. Wieselthaler. Development of a suction detection system for axial blood pumps. Artif. Organs. 28:709–716, 2004.

    Article  PubMed  Google Scholar 

  25. Wu, Y., P. E. Allaire, G. Tao, M. Adams, Y. Liu, H. Wood, and D. B. Olsen. A bridge from short-term to long-term left ventricular assist device–experimental verification of a physiological controller. Artif. Organs. 28:927–932, 2004.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to recognize the financial assistance provided by The Prince Charles Hospital Foundation (NR2013-222 and PRO2014-08), the ACTIONS National Health and Medical Research Council Centre for Research Excellence (APP1079421), Queensland Health Research Fellowship and Griffith University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jo P. Pauls.

Additional information

Associate Editor Ellen Kuhl oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pauls, J.P., Stevens, M.C., Bartnikowski, N. et al. Evaluation of Physiological Control Systems for Rotary Left Ventricular Assist Devices: An In-Vitro Study. Ann Biomed Eng 44, 2377–2387 (2016). https://doi.org/10.1007/s10439-016-1552-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1552-3

Keywords