Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Solvability of partial differential equations by meshless kernel methods

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper first provides a common framework for partial differential equation problems in both strong and weak form by rewriting them as generalized interpolation problems. Then it is proven that any well-posed linear problem in strong or weak form can be solved by certain meshless kernel methods to any prescribed accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  2. Atluri, S.N., Kim, H.-G., Cho, J.Y.: A critical assessment of the truly meshless local Petrov–Galerkin (MLPG) and local boundary integral equation (LBIE) methods. Comput. Mech. 24, 348–372 (1999)

    Article  MATH  Google Scholar 

  3. Atluri, S.N., Zhu, T.L.: A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput. Mech. 22, 117–127 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Atluri, S.N., Zhu, T.L.: The meshless local Petrov–Galerkin (MLPG) approach for solving problems in elasto-statics. Comput. Mech. 25, 169–179 (2000)

    Article  MATH  Google Scholar 

  5. Atluri, S.N., Shen, S.: The meshless local Petrov–Galerkin (mlpg) method: A simple & less-costly alternative to the finite element and boundary element methods. Comput. Model. Eng. Sci. 3, 11–51 (2002)

    MATH  MathSciNet  Google Scholar 

  6. Babuška, I., Melenk, J.M.: The partition of unity method. Int. J. Numer. Methods Eng. 40, 727–758 (1997)

    Article  MATH  Google Scholar 

  7. Babuška, I., Banerjee, U., Osborn, J.E.: Meshless and generalized finite element methods: A survey of some major results. In: Meshfree Methods for Partial Differential Equations, Lecture Notes in Computational Science and Engineering 26, pp. 1–20. Springer, Berlin Heidelberg New York (2002)

  8. Beatson, R.K., Light, W.A., Billings, S.: Fast solution of the radial basis function interpolation equations: Domain decomposition methods. SIAM J. Sci. Comput. 22, 1717–1740 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bozzini, M., Lenarduzzi, L., Schaback, R.: Adaptive interpolation by scaled multiquadrics. Adv. Comput. Math. 375–387 (2002)

  10. Brown, D., Ling, L., Kansa, E., Levesley, J.: On approximate cardinal preconditioning methods for solving PDEs with radial basis functions. Eng. Anal. Bound. Elem. 19, 343–353 (2005)

    Article  Google Scholar 

  11. Chen, J.S., Pan, C., Wu, C.T.: Reproducing kernel particle methods for large deformation analysis of nonlinear structures. Comput. Methods Appl. Mech. Eng. 139, 195–227 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. de Marchi, St., Schaback, R., Wendland, H.: Near-optimal data-independent point locations for radial basis function interpolation. Adv. Comp. Math. 23, 317–330 (2005)

    Article  MATH  Google Scholar 

  13. Dubal, M.R.: Domain decomposition and local refinement for multiquadric approximations. I. Second-order equations in one-dimension. J. Appl. Sci. Comput. 1, 146–171 (1994)

    MathSciNet  Google Scholar 

  14. Fasshauer, G.E.: Solving partial differential equations by collocation with radial basis functions. In: Le Méhauté, A., Rabut, C., Schumaker, L.L. (eds.) Surface Fitting and Multiresolution Methods, pp. 131–138. Vanderbilt University Press Nashville (1997)

    Google Scholar 

  15. Faul, A.C., Powell, M.J.D.: Proof of convergence of an iterative technique for thin plate spline interpolation in two dimensions. Adv. Comput. Math. 11, 183–192 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Franke, C., Schaback, R.: Convergence order estimates of meshless collocation methods using radial basis functions. Adv. Comput. Math. 8, 381–399 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Franke, C., Schaback, R.: Solving partial differential equations by collocation using radial basis functions. Appl. Math. Comp. 93, 73–82 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Golberg, M.A., Chen, C.S.: The Method of Fundamental Solutions for Potential, Helmholtz and Diffusion Problems. Computational Mechanics, Southampton, Boston (1998)

  19. Hon, Y.C., Schaback, R.: On unsymmetric collocation by radial basis functions. J. Appl. Math. Comput. 119, 177–186 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hon, Y.C., Schaback, R., Zhou, X.: An adaptive greedy algorithm for solving large RBF collocation problems. Numer. Algorithms 32, 13–25 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hon, Y.C., Wei, T.: A fundamental solution method for inverse heat conduction problem. Eng. Anal. Bound. Elem. 28, 489–495 (2004)

    Article  MATH  Google Scholar 

  22. Hon, Y.C., Wu, Z.: Additive Schwarz domain decomposition with a radial basis approximation. Int. J. Appl. Math. 4, 81–98 (2000)

    MATH  MathSciNet  Google Scholar 

  23. Hon, Y.C., Wu, Z.: A numerical computation for inverse boundary determination problems. Eng. Anal. Bound. Elem. 24, 599–606 (2000)

    Article  MATH  Google Scholar 

  24. Ingber, M.S., Chen, C.S., Tanski, J.A.: A mesh free approach using radial basis functions and parallel domain decomposition for solving three-dimensional diffusion equations. Int. J. Numer. Methods Eng. 60, 2183–2201 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Jost, J.: Partial Differential Equations, vol. 214 of Graduate Texts in Mathematics. Springer, Berlin Heidelberg New York (2002). Translated and revised from the 1998 German original by the author

    Google Scholar 

  26. Kansa, E.J.: Application of Hardy’s multiquadric interpolation to hydrodynamics. In: Proc. 1986 Simul. Conf., vol. 4, pp. 111–117, 1986

  27. Larsson, E., Fornberg, B.: A numerical study of some radial basis function based solution methods for elliptic PDEs. Comput. Math. Appl. 46, 891–902 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  28. Li, J., Hon, Y.C.: Domain decomposition for radial basis meshless methods. Numer. Methods PDEs 20, 450–462 (2004)

    MATH  MathSciNet  Google Scholar 

  29. Liew, K.M., Ng, T.Y., Wu, Y.C.: Meshfree method for large deformation analysis – A reproducting kernel particle approach. Engineering Structures 24, 543–551 (2002)

    Article  Google Scholar 

  30. Ling, L., Kansa, E.J.: Preconditioning for radial basis functions with domain decomposition methods. Math. Comput. Modelling (to appear) (2004)

  31. Ling, L., Kansa, E.J.: A least-squares preconditioner for radial basis functions collocation methods. Adv. Comput. Math. 23(1–2), 31–54 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  32. Ling, L., Schaback, R.: On adaptive unsymmetric meshless collocation. In: Atluri, S.N., Tadeu, A.J.B. (eds.) Proceedings of the 2004 International Conference on Computational & Experimental Engineering and Sciences, volume CD-ROM, Forsyth, USA, 2004. Advances in Computational & Experimental Engineering & Sciences, Tech Science. paper # 270.

  33. Melenk, J.M., Babuška, I.: The partition of unity finite element method: Basic theory and applications. Comput. Methods Appl. Mech. Eng. 139, 289–314 (1996)

    Article  MATH  Google Scholar 

  34. Meschkowski, H.: Hilbertsche Räume mit Kernfunktion. Springer, Berlin Heidelberg New York (1962)

    MATH  Google Scholar 

  35. Narcowich, F.J., Ward, J.D., Wendland, H.: Sobolev bounds on functions with scattered zeros, with applications to radial basis function surface fitting. Math. Comput. 74, 743–763 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  36. Opfer, R.: Multiscale kernels. (ISBN 3-8322-3521-3), Shaker Verlag (2004)

  37. Power, H., Barraco, V.: A comparison analysis between unsymmetric and symmetric radial basis function collocation methods for the numerical solution of partial differential equations. Comput. Math. Appl. 43, 551–583 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  38. Schaback, R.: Approximation by radial basis functions with finitely many centers. Constr. Approx. 12, 331–340 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  39. Schaback, R.: Convergence of unsymmetric kernel-based meshless collocation methods. Preprint Göttingen, 2005

  40. Schaback, R., Wendland, H.: Characterization and construction of radial basis functions. In: Dyn, N., Leviatan, D., Levin, D., Pinkus, A. (eds.) Multivariate Approximation and Applications, pp. 1–24. Cambridge University Press (2001)

  41. Schaback, R., Wendland, H.: Adaptive greedy techniques for approximate solution of large RBF systems. Numer. Algorithms 24(3), 239–254 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  42. Schaback, R., Wendland, H.: Kernel techniques: From machine learning to meshless methods. To appear in Acta Numerica (2006)

  43. Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4, 389–396 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  44. Wendland, H.: Meshless Galerkin methods using radial basis functions. Math. Comput. 68(228), 1521–1531 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  45. Wendland, H.: Fast evaluation of radial basis functions: Methods based on partition of unity. In: Chui, C.K., Schumaker, L.L., Stöckler, J. (eds.) Approximation Theory X: Wavelets, Splines, and Applications, pp. 473–483. Vanderbilt University Press (2002)

  46. Wendland, H.: Solving large generalized interpolation problems efficiently. In: Neamtu, M., Saff, E.B. (eds.) Advances in Constructive Approximation, pp. 509–518. Nashboro, Brentwood, Tennessee (2004)

    Google Scholar 

  47. Wu, Z.: Hermite–Birkhoff interpolation of scattered data by radial basis functions. Approx. Theory its Appl. 8(2), 1–10 (1992)

    MATH  Google Scholar 

  48. Wu, Z.: Multivariate compactly supported positive definite radial functions. Adv. Comput. Math. 4, 283–292 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  49. Yoon, J.: Spectral approximation orders of radial basis function interpolation on the Sobolev space. SIAM J. Numer. Anal. 33, 946–958 (2001)

    MATH  MathSciNet  Google Scholar 

  50. Yoon, J.: Error estimates for shifted surface spline interpolation on Sobolev space. Math. Comput. 72, 1349–1367 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  51. Yoon, S., Chen, J.S.: Accelerated meshfree method for metal forming simulation. Finite Elem. Anal. Des. 38, 937–948 (2002)

    Article  MATH  Google Scholar 

  52. Zhou, X., Hon, Y.C., Li, J.: Overlapping domain decomposition method by radial basis functions. Appl. Numer. Math. 44, 241–255 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. C. Hon.

Additional information

The work described in this paper was partially supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. CityU 101205). Robert Schaback’s research in Hong Kong was sponsored by DFG and City University of Hong Kong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hon, Y.C., Schaback, R. Solvability of partial differential equations by meshless kernel methods. Adv Comput Math 28, 283–299 (2008). https://doi.org/10.1007/s10444-006-9023-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-006-9023-2

Keywords

Mathematics Subject Classifications (2000)