Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Interpolation error estimates for mean value coordinates over convex polygons

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In a similar fashion to estimates shown for Harmonic, Wachspress, and Sibson coordinates in Gillette et al. (Adv Comput Math 37(3), 417–439, 2012), we prove interpolation error estimates for the mean value coordinates on convex polygons suitable for standard finite element analysis. Our analysis is based on providing a uniform bound on the gradient of the mean value functions for all convex polygons of diameter one satisfying certain simple geometric restrictions. This work makes rigorous an observed practical advantage of the mean value coordinates: unlike Wachspress coordinates, the gradients of the mean value coordinates do not become large as interior angles of the polygon approach π.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berrut, J.P., Floater, M.S., Klein, G.: Convergence rates of derivatives of a family of barycentric rational interpolants. Appl. Numer. Math. 61(9), 989–1000 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bramble, J.H., Hilbert, S.R.: Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation. SIAM J. Numer. Anal. 7(1), 112–124 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. In: Texts in Applied Mathematics, vol. 15, 3rd edn. Springer, New York (2008)

    Google Scholar 

  4. Ciarlet, P.G.: The finite element method for elliptic problems. In: Classics in Applied Mathematics, vol. 40, 2nd edn. SIAM, Philadelphia (2002)

    Google Scholar 

  5. Dasgupta, G., Wachspress, E.L.: Basis functions for concave polygons. Comput. Math. Appl. 56(2), 459–468 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dekel, S., Leviatan, D.: The Bramble–Hilbert lemma for convex domains. SIAM J. Math. Anal. 35(5), 1203–1212 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dyken, C., Floater, M.: Transfinite mean value interpolation. Comput. Aided Geom. Des. 26(1), 117–134 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ern, A., Guermond, J.L.: Theory and practice of finite elements. In: Applied Mathematical Sciences, vol. 159. Springer, New York (2004)

    Google Scholar 

  9. Farbman, Z., Hoffer, G., Lipman, Y., Cohen-Or, D., Lischinski, D.: Coordinates for instant image cloning. In: ACM SIGGRAPH, pp. 1–9. ACM (2009)

  10. Farin, G.: Surfaces over Dirichlet tessellations. Comput. Aided Geom. Des. 7(1–4), 281–292 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Floater, M.: Mean value coordinates. Comput. Aided Geom. Des. 20(1), 19–27 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Floater, M.S., Hormann, K.: Barycentric rational interpolation with no poles and high rates of approximation. Numer. Math. 107(2), 315–331 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Floater, M., Kosinka, J.: Barycentric interpolation and mappings on smooth convex domains. In: Proceedings of the 14th ACM Symposium on Solid and Physical Modeling, pp. 111–116. ACM (2010)

  14. Floater, M.S., Kós, G., Reimers, M.: Mean value coordinates in 3D. Comput. Aided Geom. Des. 22(7), 623–631 (2005)

    Article  MATH  Google Scholar 

  15. Floater, M., Hormann, K., Kós, G.: A general construction of barycentric coordinates over convex polygons. Adv. Comput. Math. 24(1), 311–331 (2006)

    Article  MATH  Google Scholar 

  16. Gillette, A., Rand, A., Bajaj, C.: Error estimates for generalized barycentric coordinates. Adv. Comput. Math. 37(3), 417–439 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guattery, S., Miller, G.L., Walkington, N.: Estimating interpolation error: a combinatorial approach. In: Proc. 10th Symp. Discrete Algorithms, pp. 406–413 (1999)

  18. Hormann, K., Floater, M.S.: Mean value coordinates for arbitrary planar polygons. ACM Trans. Graphics 25(4), 1424–1441 (2006)

    Article  Google Scholar 

  19. Hormann, K., Sukumar, N.: Maximum entropy coordinates for arbitrary polytopes. Computer Graphics Forum 27(5), 1513–1520 (2008)

    Article  Google Scholar 

  20. Joshi, P., Meyer, M., DeRose, T., Green, B., Sanocki, T.: Harmonic coordinates for character articulation. ACM Trans. Graphics 26, 71 (2007)

    Article  Google Scholar 

  21. Ju, T., Liepa, P., Warren, J.: A general geometric construction of coordinates in a convex simplicial polytope. Comput. Aided Geom. Des. 24(3), 161–178 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Křížek, M.: On semiregular families of triangulations and linear interpolation. Appl. Math. 36(3), 223–232 (1991)

    MathSciNet  MATH  Google Scholar 

  23. Lipman, Y., Kopf, J., Cohen-Or, D., Levin, D.: GPU-assisted positive mean value coordinates for mesh deformations. In: Proc. Fifth Eurographics Symp. Geom. Proc., pp. 117–123. Eurographics Association (2007)

  24. Manson, J., Schaefer, S.: Moving least squares coordinates. Computer Graphics Forum 29(5), 1517–1524 (2010)

    Article  Google Scholar 

  25. Manson, J., Li, K., Schaefer, S.: Positive Gordon-Wixom coordinates. Comput. Aided Des. 43(11), 1422–1426 (2011)

    Article  Google Scholar 

  26. Martin, S., Kaufmann, P., Botsch, M., Wicke, M., Gross, M.: Polyhedral finite elements using harmonic basis functions. In: Proc. Symp. Geom. Proc., pp. 1521–1529 (2008)

  27. Milbradt, P., Pick, T.: Polytope finite elements. Int. J. Numer. Methods Eng. 73(12), 1811–1835 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pang, W., Qin, J., Cohen, M., Heng, P., Choi, K.: Fast rendering of diffusion curves with triangles. IEEE Comput. Graph. Appl. 32(4), 68–78 (2012)

    Article  Google Scholar 

  29. Rustamov, R.M.: Barycentric coordinates on surfaces. Computer Graphics Forum 29(5), 1507–1516 (2010)

    Article  Google Scholar 

  30. Rustamov, R.M.: A versatile framework for shape description. In: The Visual Computer, pp. 1–12 (2010)

  31. Sibson, R.: A vector identity for the Dirichlet tessellation. Math. Proc. Camb. Philos. Soc. 87(1), 151–155 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sukumar, N., Malsch, E.A.: Recent advances in the construction of polygonal finite element interpolants. Arch. Comput. Methods. Eng. 13(1), 129–163 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sukumar, N., Tabarraei, A.: Conforming polygonal finite elements. Int. J. Numer. Methods Eng. 61(12), 2045–2066 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tabarraei, A., Sukumar, N.: Application of polygonal finite elements in linear elasticity. Int. J. Comput. Methods 3(4), 503–520 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Verfürth, R.: A note on polynomial approximation in Sobolev spaces. Math. Modell. Numer. Anal. 33(4), 715–719 (1999)

    Article  MATH  Google Scholar 

  36. Wachspress, E.L.: A Rational finite element basis. In: Mathematics in Science and Engineering, vol. 114. Academic Press, New York (1975)

    Google Scholar 

  37. Warren, J.: On the uniqueness of barycentric coordinates. In: Goldman, R., Krasauskas, R. (eds.) Topics in Algebraic Geometry and Geometric Modeling, vol. 334, p. 93. American Mathematical Society (2003)

  38. Warren, J., Schaefer, S., Hirani, A.N., Desbrun, M.: Barycentric coordinates for convex sets. Adv. Comput. Math. 27(3), 319–338 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wicke, M., Botsch, M., Gross, M.: A finite element method on convex polyhedra. Comput. Graphics Forum 26(3), 355–364 (2007)

    Article  Google Scholar 

  40. Zienkiewicz, O., Taylor, R.: The Finite Element Method, 5th edn. Butterworth-Heinemann, London (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandrajit Bajaj.

Additional information

Communicated by Douglas Arnold.

This research was supported in part by NIH contracts R01-EB00487, R01-GM074258, and a grant from the UT-Portugal CoLab project. This work was performed while the first author was at the Institute for Computational Engineering and Sciences at the University of Texas at Austin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rand, A., Gillette, A. & Bajaj, C. Interpolation error estimates for mean value coordinates over convex polygons. Adv Comput Math 39, 327–347 (2013). https://doi.org/10.1007/s10444-012-9282-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-012-9282-z

Keywords

Mathematics Subject Classifications (2010)