Abstract
In a similar fashion to estimates shown for Harmonic, Wachspress, and Sibson coordinates in Gillette et al. (Adv Comput Math 37(3), 417–439, 2012), we prove interpolation error estimates for the mean value coordinates on convex polygons suitable for standard finite element analysis. Our analysis is based on providing a uniform bound on the gradient of the mean value functions for all convex polygons of diameter one satisfying certain simple geometric restrictions. This work makes rigorous an observed practical advantage of the mean value coordinates: unlike Wachspress coordinates, the gradients of the mean value coordinates do not become large as interior angles of the polygon approach π.
Similar content being viewed by others
References
Berrut, J.P., Floater, M.S., Klein, G.: Convergence rates of derivatives of a family of barycentric rational interpolants. Appl. Numer. Math. 61(9), 989–1000 (2011)
Bramble, J.H., Hilbert, S.R.: Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation. SIAM J. Numer. Anal. 7(1), 112–124 (1970)
Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. In: Texts in Applied Mathematics, vol. 15, 3rd edn. Springer, New York (2008)
Ciarlet, P.G.: The finite element method for elliptic problems. In: Classics in Applied Mathematics, vol. 40, 2nd edn. SIAM, Philadelphia (2002)
Dasgupta, G., Wachspress, E.L.: Basis functions for concave polygons. Comput. Math. Appl. 56(2), 459–468 (2008)
Dekel, S., Leviatan, D.: The Bramble–Hilbert lemma for convex domains. SIAM J. Math. Anal. 35(5), 1203–1212 (2004)
Dyken, C., Floater, M.: Transfinite mean value interpolation. Comput. Aided Geom. Des. 26(1), 117–134 (2009)
Ern, A., Guermond, J.L.: Theory and practice of finite elements. In: Applied Mathematical Sciences, vol. 159. Springer, New York (2004)
Farbman, Z., Hoffer, G., Lipman, Y., Cohen-Or, D., Lischinski, D.: Coordinates for instant image cloning. In: ACM SIGGRAPH, pp. 1–9. ACM (2009)
Farin, G.: Surfaces over Dirichlet tessellations. Comput. Aided Geom. Des. 7(1–4), 281–292 (1990)
Floater, M.: Mean value coordinates. Comput. Aided Geom. Des. 20(1), 19–27 (2003)
Floater, M.S., Hormann, K.: Barycentric rational interpolation with no poles and high rates of approximation. Numer. Math. 107(2), 315–331 (2007)
Floater, M., Kosinka, J.: Barycentric interpolation and mappings on smooth convex domains. In: Proceedings of the 14th ACM Symposium on Solid and Physical Modeling, pp. 111–116. ACM (2010)
Floater, M.S., Kós, G., Reimers, M.: Mean value coordinates in 3D. Comput. Aided Geom. Des. 22(7), 623–631 (2005)
Floater, M., Hormann, K., Kós, G.: A general construction of barycentric coordinates over convex polygons. Adv. Comput. Math. 24(1), 311–331 (2006)
Gillette, A., Rand, A., Bajaj, C.: Error estimates for generalized barycentric coordinates. Adv. Comput. Math. 37(3), 417–439 (2012)
Guattery, S., Miller, G.L., Walkington, N.: Estimating interpolation error: a combinatorial approach. In: Proc. 10th Symp. Discrete Algorithms, pp. 406–413 (1999)
Hormann, K., Floater, M.S.: Mean value coordinates for arbitrary planar polygons. ACM Trans. Graphics 25(4), 1424–1441 (2006)
Hormann, K., Sukumar, N.: Maximum entropy coordinates for arbitrary polytopes. Computer Graphics Forum 27(5), 1513–1520 (2008)
Joshi, P., Meyer, M., DeRose, T., Green, B., Sanocki, T.: Harmonic coordinates for character articulation. ACM Trans. Graphics 26, 71 (2007)
Ju, T., Liepa, P., Warren, J.: A general geometric construction of coordinates in a convex simplicial polytope. Comput. Aided Geom. Des. 24(3), 161–178 (2007)
Křížek, M.: On semiregular families of triangulations and linear interpolation. Appl. Math. 36(3), 223–232 (1991)
Lipman, Y., Kopf, J., Cohen-Or, D., Levin, D.: GPU-assisted positive mean value coordinates for mesh deformations. In: Proc. Fifth Eurographics Symp. Geom. Proc., pp. 117–123. Eurographics Association (2007)
Manson, J., Schaefer, S.: Moving least squares coordinates. Computer Graphics Forum 29(5), 1517–1524 (2010)
Manson, J., Li, K., Schaefer, S.: Positive Gordon-Wixom coordinates. Comput. Aided Des. 43(11), 1422–1426 (2011)
Martin, S., Kaufmann, P., Botsch, M., Wicke, M., Gross, M.: Polyhedral finite elements using harmonic basis functions. In: Proc. Symp. Geom. Proc., pp. 1521–1529 (2008)
Milbradt, P., Pick, T.: Polytope finite elements. Int. J. Numer. Methods Eng. 73(12), 1811–1835 (2008)
Pang, W., Qin, J., Cohen, M., Heng, P., Choi, K.: Fast rendering of diffusion curves with triangles. IEEE Comput. Graph. Appl. 32(4), 68–78 (2012)
Rustamov, R.M.: Barycentric coordinates on surfaces. Computer Graphics Forum 29(5), 1507–1516 (2010)
Rustamov, R.M.: A versatile framework for shape description. In: The Visual Computer, pp. 1–12 (2010)
Sibson, R.: A vector identity for the Dirichlet tessellation. Math. Proc. Camb. Philos. Soc. 87(1), 151–155 (1980)
Sukumar, N., Malsch, E.A.: Recent advances in the construction of polygonal finite element interpolants. Arch. Comput. Methods. Eng. 13(1), 129–163 (2006)
Sukumar, N., Tabarraei, A.: Conforming polygonal finite elements. Int. J. Numer. Methods Eng. 61(12), 2045–2066 (2004)
Tabarraei, A., Sukumar, N.: Application of polygonal finite elements in linear elasticity. Int. J. Comput. Methods 3(4), 503–520 (2006)
Verfürth, R.: A note on polynomial approximation in Sobolev spaces. Math. Modell. Numer. Anal. 33(4), 715–719 (1999)
Wachspress, E.L.: A Rational finite element basis. In: Mathematics in Science and Engineering, vol. 114. Academic Press, New York (1975)
Warren, J.: On the uniqueness of barycentric coordinates. In: Goldman, R., Krasauskas, R. (eds.) Topics in Algebraic Geometry and Geometric Modeling, vol. 334, p. 93. American Mathematical Society (2003)
Warren, J., Schaefer, S., Hirani, A.N., Desbrun, M.: Barycentric coordinates for convex sets. Adv. Comput. Math. 27(3), 319–338 (2007)
Wicke, M., Botsch, M., Gross, M.: A finite element method on convex polyhedra. Comput. Graphics Forum 26(3), 355–364 (2007)
Zienkiewicz, O., Taylor, R.: The Finite Element Method, 5th edn. Butterworth-Heinemann, London (2000)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Douglas Arnold.
This research was supported in part by NIH contracts R01-EB00487, R01-GM074258, and a grant from the UT-Portugal CoLab project. This work was performed while the first author was at the Institute for Computational Engineering and Sciences at the University of Texas at Austin.
Rights and permissions
About this article
Cite this article
Rand, A., Gillette, A. & Bajaj, C. Interpolation error estimates for mean value coordinates over convex polygons. Adv Comput Math 39, 327–347 (2013). https://doi.org/10.1007/s10444-012-9282-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10444-012-9282-z