Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Dominance-based Rough Set Approach to decision under uncertainty and time preference

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We consider a problem of decision under uncertainty with outcomes distributed over time. We propose a rough set model based on a combination of time dominance and stochastic dominance. For the sake of simplicity we consider the case of traditional additive probability distribution over the set of states of the world, however, we show that the model is rich enough to handle non-additive probability distributions, and even qualitative ordinal distributions. The rough set approach gives a representation of decision maker’s time-dependent preferences under uncertainty in terms of “if…, then…” decision rules induced from rough approximations of sets of exemplary decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allais, M. (1953). Le comportement de l’homme rationnel devant le risque; critique des postulats et axioms de l’école américaine. Econometrica, 21, 503–546.

    Article  Google Scholar 

  • Artzner, P., Delbaen, F., Eber, J., & Heath, D. (1999). Coherent measures of risk. Mathematical Finance, 9, 203–228.

    Article  Google Scholar 

  • Bøhren, Ø., & Hansen, T. (1980). Capital budgeting with unspecified discount rates. Scandinavian Journal of Economics, 82, 45–58.

    Article  Google Scholar 

  • Borgonovo, E., & Peccati, L. (2009). Financial management in inventory problems: risk averse vs risk neutral policies. International Journal of Production Economics, 118, 233–242.

    Article  Google Scholar 

  • Ekern, S. (1981). Time dominance efficiency analysis. Journal of Finance, 36, 1023–1034.

    Article  Google Scholar 

  • Ellsberg, D. (1961). Risk, ambiguity, and the savage axioms. Quarterly Journal of Economics, 75, 643–669.

    Article  Google Scholar 

  • Epstein, L., Marinacci, M., & Seo, K. (2007). Coarse contingencies and ambiguity. Theoretical Economics, 2, 355–394.

    Google Scholar 

  • Fishburn, P. (1988). Nonlinear preferences and utility theory. Baltimore: The John Hopkins University Press.

    Google Scholar 

  • Frederick, S., Loewenstein, G., & O’Donoghue, T. (2002). Time discounting and time preference: a critical review. Journal of Economic Literature, 40, 351–401.

    Article  Google Scholar 

  • Ghirardato, P., Marinacci, M., & Maccheroni, F. (2004). Differentiating ambiguity and ambiguity attitude. Journal of Economic Theory, 118, 133–173.

    Article  Google Scholar 

  • Gilboa, I., & Schmeidler, D. (1989). Maxmin expected utility with a non-unique prior. Journal of Mathematical Economics, 18, 141–153.

    Article  Google Scholar 

  • Greco, S., Matarazzo, B., & Słowiński, R. (1999). The use of rough sets and fuzzy sets in MCDM. In T. Gal, T. Hanne & T. Stewart (Eds.), Multicriteria decision making: advances in MCDM models, algorithms, theory and applications (pp. 14.1–14.59). Dordrecht: Kluwer Academic Publishers, Chap. 14.

    Google Scholar 

  • Greco, S., Matarazzo, B., Słowiński, R., & Stefanowski, J. (2001a). An algorithm for induction of decision rules consistent with dominance principle. In W. Ziarko & Y. Yao (Eds.), Lecture notes in artificial intelligence: Vol. 2005. Rough sets and current trends in computing (pp. 304–313). Berlin: Springer.

    Chapter  Google Scholar 

  • Greco, S., Matarazzo, B., & Słowiński, R. (2001b). Rough set approach to decisions under risk. In W. Ziarko & Y. Yao (Eds.), Lecture notes in artificial intelligence: Vol. 2005. Rough sets and current trends in computing (pp. 160–169). Berlin: Springer.

    Chapter  Google Scholar 

  • Greco, S., Matarazzo, B., & Słowiński, R. (2001c). Rough sets theory for multicriteria decision analysis. European Journal of Operational Research, 129, 1–47.

    Article  Google Scholar 

  • Greco, S., Matarazzo, B., & Słowiński, R. (2005). Decision rule approach. In J. Figueira, S. Greco & M. Ehrgott (Eds.), Multiple criteria decision analysis: state of the art surveys (pp. 507–562). Berlin: Springer. Chap. 13.

    Google Scholar 

  • Kahnemann, D., & Tversky, A. (1979). Prospect theory: an analysis of decision under risk. Econometrica, 47, 263–291.

    Article  Google Scholar 

  • Koopmans, T. (1960). Stationary ordinal utility and impatience. Econometrica, 28, 287–309.

    Article  Google Scholar 

  • Kreps, D. M. (1979). A representation theorem for “preference for flexibility”. Econometrica, 47, 565–577.

    Article  Google Scholar 

  • Levy, H. (1973). Stochastic dominance, efficiency criteria, and efficient portfolios: the multi-period case. American Economic Review, 63, 986–984.

    Google Scholar 

  • Levy, H. (1992). Stochastic dominance and expected utility: survey and analysis. Management Science, 38, 555–593.

    Article  Google Scholar 

  • Marinacci, M., & Montrucchio, L. (2004). Introduction to the mathematics of ambiguity. In I. Gilboa (Ed.), Uncertainty in economic theory: a collection of essays in honor of David Schmeidler’s 65th birthday (pp. 46–107). New York: Routledge.

    Chapter  Google Scholar 

  • Pawlak, Z. (1991). Rough sets. Theoretical aspects of reasoning about data. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Samuelson, P. (1937). A note on measurement of utility. Review of Economic Studies, 4, 155–161.

    Article  Google Scholar 

  • Savage, L. (1954). The foundations of statistics. New York: Wiley.

    Google Scholar 

  • Schmeidler, D. (1989). Subjective probability and expected utility without additivity. Econometrica, 57, 571–587.

    Article  Google Scholar 

  • Słowiński, R., Greco, S., & Matarazzo, B. (2005). Rough set based decision support. In E. Burke & G. Kendall (Eds.), Introductory tutorials on optimization, search and decision support methodologies (pp. 457–524). Berlin: Springer, Chap. 16.

    Google Scholar 

  • Starmer, C. (2000). Developments in non-expected utility theory: the hunt for a descriptive theory of choice under risk. Journal of Economic Literature, 38, 332–382.

    Google Scholar 

  • von Neumann, J., & Morgenstern, O. (1947). The theory of games and economic behaviour (2nd edn.). Princeton: Princeton Univ. Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Słowiński.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greco, S., Matarazzo, B. & Słowiński, R. Dominance-based Rough Set Approach to decision under uncertainty and time preference. Ann Oper Res 176, 41–75 (2010). https://doi.org/10.1007/s10479-009-0566-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-009-0566-8

Keywords