Abstract
Conservation and monitoring of forest biodiversity requires reliable information about forest structure and composition at multiple spatial scales. However, detailed data about forest habitat characteristics across large areas are often incomplete due to difficulties associated with field sampling methods. To overcome this limitation we employed a nationally available light detection and ranging (LiDAR) remote sensing dataset to develop variables describing forest landscape structure across a large environmental gradient in Switzerland. Using a model species indicative of structurally rich mountain forests (hazel grouse Bonasa bonasia), we tested the potential of such variables to predict species occurrence and evaluated the additional benefit of LiDAR data when used in combination with traditional, sample plot-based field variables. We calibrated boosted regression trees (BRT) models for both variable sets separately and in combination, and compared the models’ accuracies. While both field-based and LiDAR models performed well, combining the two data sources improved the accuracy of the species’ habitat model. The variables retained from the two datasets held different types of information: field variables mostly quantified food resources and cover in the field and shrub layer, LiDAR variables characterized heterogeneity of vegetation structure which correlated with field variables describing the understory and ground vegetation. When combined with data on forest vegetation composition from field surveys, LiDAR provides valuable complementary information for encompassing species niches more comprehensively. Thus, LiDAR bridges the gap between precise, locally restricted field-data and coarse digital land cover information by reliably identifying habitat structure and quality across large areas.
Similar content being viewed by others
References
Aberg J, Swenson JE, Angelstam P (2003) The habitat requirements of hazel grouse (Bonasa bonasia) in managed boreal forest and applicability of forest stand descriptions as a tool to identify suitable patches. For Ecol Manag 175(1–3):437–444
Artuso R, Boyet S, Streilein A (2003) Practical methods for the verification of countrywide terrain and surface models. Int Arch Photogramm Remote Sens 34:1419
Attiwill PM (1994) The disturbance of forest ecosystems: the ecological basis for conservative management. For Ecol Manag 63(2–3):247–300
Bergmann H-H, Klaus S, Müller F, Scherzinger W, Swenson JE, Wiesner J (1996) Die Haselhühner—4. überarbeitete Auflage. Die neue Brehm-Bücherei Bd.77. Westarp Wissenschaften, Magdeburg
Bradbury RB, Hill RA, Mason DC, Hinsley SA, Wilson JD, Balzter H, Anderson GQA, Whittingham MJ, Davenport IJ, Bellamy PE (2005) Modelling relationships between birds and vegetation structure using airborne LiDAR data: a review with case studies from agricultural and woodland environments. Ibis 147(3):443–452
Braunisch V, Suchant R (2010) Predicting species distributions based on incomplete survey data: the trade-off between precision and scale. Ecography 33(5):826–840
Clawges RM, Vierling KT, Vierling LA, Rowell E (2008) The use of airborne lidar to assess avian species diversity, density, and occurrence in a pine/aspen forest. Remote Sens Environ 112(5):2064–2073
Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77(4):802–813
Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24(1):38–49
Flaspohler DJ, Giardina CP, Asner GP, Hart P, Price J, Lyons CKA, Castaneda X (2010) Long-term effects of fragmentation and fragment properties on bird species richness in Hawaiian forests. Biol Conserv 143(2):280–288
Franklin JF, Spies TA, Van Pelt R, Carey AB, Thornburgh DA, Berg DR, Lindenmayer DB, Harmon ME, Keeton WS, Shaw DC, Bible K, Chen JQ (2002) Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. For Ecol Manag 155(1–3):399–423
Friedman JH (2002) Stochastic gradient boosting. Comput Stat Data Anal 38(4):367–378
Gehrig-Fasel J, Guisan A, Zimmermann NE (2007) Tree line shifts in the Swiss Alps: climate change or land abandonment? J Veg Sci 18(4):571–582
Goetz SJ, Steinberg D, Dubayah RO, Blair B (2007) Laser remote sensing of canopy habitat heterogeneity as a predictor of bird species richness in an eastern temperate forest, USA. Remote Sens Environ 108(3):254–263
Goetz SJ, Steinberg D, Betts MG, Holmes RT, Doran PJ, Dubayah R, Hofton M (2010) Lidar remote sensing variables predict breeding habitat of a Neotropical migrant bird. Ecology 91(6):1569–1576
Gonseth Y, Wohlgemuth T, Sansonnens B, Buttler A (2001) Die biogeographischen Regionen der Schweiz. Erläuterungen und Einteilungsstandard. Umwelt Materialien Nr. 137 Bundesamt für Umwelt, Wald und Landschaft, Bern
Goodwin NR, Coops NC, Bater CW, Gergel SE (2007) Assessment of sub-canopy structure in a complex coniferous forest. In: Proceedings of the ISPR Workshop “Laser Scanning 2007 and SilviLaser 2007”, Espoo, September 12–14, 2007, Finland, vol XXXVI ISSN:1682–1777, P3/W52:169–172
Graf RF, Bollmann K, Sachot S, Suter W, Bugmann H (2006) On the generality of habitat distribution models: a case study of capercaillie in three Swiss regions. Ecography 29(3):319–328
Graf RF, Mathys L, Bollmann K (2009) Habitat assessment for forest dwelling species using LiDAR remote sensing: Capercaillie in the Alps. For Ecol Manag 257(1):160–167
Hastie T, Tibshirani R, Friedman JH (2001) The elements of statistical learning: sata mining, inference, and prediction. Springer series in statisticsSpringer, New York
Hijmans RJ, Phillips SJ, Leathwick JR, Elith J (2011) Species distribution modeling (dismo). Package version 0.7–8. http://cran.r-project.org/web/packages/dismo/index.html. Accessed 20 April 2012
Hill RA, Hinsley SA, Gaveau DLA, Bellamy PE (2004) Predicting habitat quality for Great Tits (Parus major) with airborne laser scanning data. Int J Remote Sens 25(22):4851–4855
Hosmer DW, Lemeshow S (2000) Applied logistic regression, 2nd edn. Wiley, New York
Johnson DH (1980) The comparison of usage and availability measurements for evaluating resource preference. Ecology 61(1):65–71
Jones J (2001) Habitat selection studies in avian ecology: a critical review. Auk 118(2):557–562
Keller M (2005) Schweizerisches Landesforstinventar. Anleitung für die Feldaufnahmen der Erhebung 2004–2007. Eidg. Forschungsanstalt WSL, Birmensdorf
Klaus S, Martens J, Andreev AV, Sun Y-H (2003) Bonasa bonasia (Linnaeus, 1758). Atlas Verbr Palaearkt Vögel 20:1–15
Larsson T-B (2001) Biodiversity evaluation tools for European forests. Ecol Bull 50:000
Lefsky MA, Cohen WB, Parker GG, Harding DJ (2002) Lidar remote sensing for ecosystem studies. Bioscience 52(1):19–30
Lesak AA, Radeloff VC, Hawbaker TJ, Pidgeon AM, Gobakken T, Contrucci K (2011) Modeling forest songbird species richness using LiDAR-derived measures of forest structure. Remote Sens Environ 115(11):2823–2835
Lindenmayer DB, Margules CR, Botkin DB (2000) Indicators of biodiversity for ecologically sustainable forest management. Conserv Biol 14(4):941–950
MacKenzie DI, Nichols JD, Gideon BL, Droege S, Royle JA, Langtimm CA (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83(8):2248–2255
Mathys L, Zimmermann NE, Zbinden N, Suter W (2006) Identifying habitat suitability for hazel grouse Bonasa bonasia at the landscape scale. Wildl Biol 12(4):357–366
McGarigal K, Cushman SA, Neel MC, Ene E (2002) FRAGSTATS: spatial pattern analysis program for categorical maps. Computer software program. University of Massachusetts, Amherst. http://www.umass.edu/landeco/research/fragstats/-fragstats.html. Accessed 15 Aug 2012
Morsdorf F, Marell A, Koetz B, Cassagne N, Pimont F, Rigolot E, Allgöwer B (2010) Discrimination of vegetation strata in a multi-layered Mediterranean forest ecosystem using height and intensity information derived from airborne laser scanning. Remote Sens Environ 114(7):1403–1415
Müller J, Brandl R (2009) Assessing biodiversity by remote sensing in mountainous terrain: the potential of LiDAR to predict forest beetle assemblages. J Appl Ecol 46(4):897–905
Müller D, Schroder B, Müller J (2009a) Modelling habitat selection of the cryptic Hazel Grouse Bonasa bonasia in a montane forest. J Ornithol 150(4):717–732
Müller J, Moning C, Bässler C, Heurich M, Brandl R (2009b) Using airborne laser scanning to model potential abundance and assemblages of forest passerines. Basic Appl Ecol 10(7):671–681
Müller J, Stadler J, Brandl R (2010) Composition versus physiognomy of vegetation as predictors of bird assemblages: the role of lidar. Remote Sens Environ 114(3):490–495
Noss RF (1990) Indicators for monitoring biodiversity—a hierarchical approach. Conserv Biol 4(4):355–364
Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge
R Development Core Team (2011) R: a language and environment for statistical computing. Package version 2.13.2. R Foundation for Statistical Computing, Vienna
Schäublin S, Bollmann K (2011) Winter habitat selection and conservation of Hazel Grouse (Bonasa bonasia) in mountain forests. J Ornithol 152(1):179–192. doi:10.1007/s10336-010-0563-3
Schönenberger W (2001) Trends in mountain forest management in Switzerland. Schweizerische Zeitschrift für Forstwesen 152:152–156
Schönenberger W (2002) Windthrow research after the 1990 storm Vivian in Switzerland: objectives, study sites, and projects. For Snow Landsc Res 77(1–2):9–16
Seavy NE, Viers JH, Wood JK (2009) Riparian bird response to vegetation structure: a multiscale analysis using LiDAR measurements of canopy height. Ecol Appl 19(7):1848–1857
Simonson WD, Allen HD, Coomes DA (2012) Use of an airborne lidar system to model plant species composition and diversity of Mediterranean oak forests. Conserv Biol 26(5):840–850
Stöcklin J, Bosshard A, Klaus G, Rudmann-Maurer K, Fischer M (2007) Landnutzung und biologische Vielfalt in den Alpen - Thematische Synthese zum Forschungsschwerpunkt 2 “Land- und Forstwirtschaft im alpinen Lebensraum” des Nationalen Forschungungsprogramms NFP 48 “Landschaften und Lebensräume der Alpen” des Schweizerischen Nationalfonds SNF. vdf Hochschulverlag AG, Zürich
Swatantran A, Dubayah R, Goetz SJ, Hofton M, Betts MG, Sun M, Simard M, Holmes R (2012) Mapping migratory bird prevalence using remote sensing data fusion. PLoS One 7(1):e28922
Swenson JE (1991) Social organization of hazel grouse and ecological factors influencing it. Dissertation, University of Alberta, Edmonton, Canada
Swisstopo (2012) VECTOR25. http://www.swisstopo.admin.ch/internet/swisstopo/-de/home/products/landscape/vector25.html. Accessed 13 Jan 2012
Turner W, Spector S, Gardiner N, Fladeland M, Sterling E, Steininger M (2003) Remote sensing for biodiversity science and conservation. Trends Ecol Evol 18(6):306–314
Vierling KT, Vierling LA, Gould WA, Martinuzzi S, Clawges RM (2008) Lidar: shedding new light on habitat characterization and modeling. Front Ecol Environ 6(2):90–98
Vierling KT, Bässler C, Brandl R, Vierling LA, Weiss I, Müller J (2011) Spinning a laser web: predicting spider distributions using LiDAR. Ecol Appl 21(2):577–588
Waser LT, Ginzler C, Kuechler M, Baltsavias E, Hurni L (2011) Semi-automatic classification of tree species in different forest ecosystems by spectral and geometric variables derived from airborne digital sensor (ADS40) and RC30 data. Remote Sens Environ 115(1):76–85
Wilsey CB, Lawler JJ, Cimprich DA (2012) Performance of habitat suitability models for the endangered black-capped vireo built with remotely-sensed data. Remote Sens Environ 119:35–42
Zellweger F, Braunisch V, Baltensweiler A, Bollmann K (2013) Remotely sensed forest structural complexity predicts multi species occurrence at the landscape scale. For Ecol Manag 307:303–312
Acknowledgments
This study was part of a research project funded by the research programme ‘Forest and climate change’ of the Swiss Federal Inst. for Forest, Snow and Landscape Research WSL and the Federal Office for the Environment FOEN. We are grateful to the Swiss Ornithological Institute for providing the species data. Special thanks to all the people involved in the field work, namely Lisa Bitterlin, Lucretia Deplazes, Nino Maag, Lea Hofstetter, Maria Rusche, Karin Feller and Joy Coppes.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Online Resource 1
Description and definition of all field variables, including the sampling reference within the sampling plot. Supplementary Fig. 1 (DOC 57 kb)
Online Resource 2
Detailed description and flow chart of the LiDAR data processing and variable extraction. Supplementary Fig. 2 (DOC 69 kb)
Online Resource 3
Description and definition of all LiDAR variables. Supplementary Fig. 3 (DOC 42 kb)
Online Resource 4
Statistical overview of field and LiDAR variables. Supplementary Fig. 4 (DOC 65 kb)
Online Resource 5
Moran’s I correlogram on residuals of the combined BRT model for the analysis of potential spatial autocorrelation in the data. Supplementary Fig. 5 (DOC 38 kb)
Rights and permissions
About this article
Cite this article
Zellweger, F., Morsdorf, F., Purves, R.S. et al. Improved methods for measuring forest landscape structure: LiDAR complements field-based habitat assessment. Biodivers Conserv 23, 289–307 (2014). https://doi.org/10.1007/s10531-013-0600-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10531-013-0600-7