Abstract
Transforming growth factor-beta (TGF-β) is a multifunctional regulatory polypeptide that is the prototypical member of a large family of cytokines that controls many aspects of cellular function, including cellular proliferation, differentiation, migration, apoptosis, adhesion, angiogenesis, immune surveillance, and survival. The actions of TGF-β are dependent on several factors including cell type, growth conditions, and the presence of other polypeptide growth factors. One of the biological effects of TGF-β is the inhibition of proliferation of most normal epithelial cells using an autocrine mechanism of action, and this suggests a tumor suppressor role for TGF-β. Loss of autocrine TGF-β activity and/or responsiveness to exogenous TGF-β appears to provide some epithelial cells with a growth advantage leading to malignant progression. This suggests a pro-oncogenic role for TGF-β in addition to its tumor suppressor role. During the early phase of epithelial tumorigenesis, TGF-β inhibits primary tumor development and growth by inducing cell cycle arrest and apoptosis. In late stages of tumor progression when tumor cells become resistant to growth inhibition by TGF-β due to inactivation of the TGF-β signaling pathway or aberrant regulation of the cell cycle, the role of TGF-β becomes one of tumor promotion. Resistance to TGF-β-mediated inhibition of proliferation is frequently observed in multiple human cancers, as are various alterations in the complex TGF-β signaling and cell cycle pathways. TGF-β can exert effects on tumor and stromal cells as well as alter the responsiveness of tumor cells to TGF-β to stimulate invasion, angiogenesis, and metastasis, and to inhibit immune surveillance. Because of the dual role of TGF-β as a tumor suppressor and pro-oncogenic factor, members of the TGF-β signaling pathway are being considered as predictive biomarkers for progressive tumorigenesis, as well as molecular targets for prevention and treatment of cancer and metastasis.
Similar content being viewed by others
References
Abe, T., Ouyang, H., Migita, T., Kato, Y., Kimura, M., Shiiba, K., et al. (1996). The somatic mutation frequency of the transforming growth factor β receptor type II gene varies widely among different cancers with microsatellite instability. European Journal of Surgical Oncology, 22, 474–477.
Albright, C. D., Salganik, R. I., Craciunescu, C. N., Mar, M. H., & Zeisel, S. H. (2003). Mitochondrial and microsomal derived reactive oxygen species mediate apoptosis induced by transforming growth factor β1 in immortalized rat hepatocytes. Journal of Cellular Biochemistry, 89, 254–261.
Amendt, C., Schirmacher, P., Weber, H., & Blessing, M. (1998). Expression of a dominant negative type II TGF-β receptor in mouse skin results in an increase in carcinoma incidence and an acceleration of carcinoma development. Oncogene, 17, 25–34.
Amoroso, S. R., Huang, N., Roberts, A. B., Potter, M., & Letterio, J. J. (1998). Consistent loss of functional transforming growth factor β receptor expression in murine plasmacytomas. Proceedings of the National Academy of Sciences of the United States of America, 95, 189–194.
Arrick, B. A., Lopez, A. R., Elfman, F., Ebner, R., Damsky, C. H., & Derynck, R. (1992). Altered metabolic and adhesive properties and increased tumorigenesis associated with increased expression of transforming growth factor β1. Journal of Cell Biology, 118, 715–726.
Arteaga, C. L., Carty-Dugger, T., Moses, H. L., Hurd, S. D., & Pietenpol, J. A. (1993). Transforming growth factor β1 can induce estrogen-independent tumorigenicity of human breast cancer cells in athymic mice. Cell Growth & Differentiation, 4, 193–201.
Arteaga, C. L., Coffey, R. J. Jr., Dugger, T. C., McCutchen, C. M., Moses, H. L., & Lyons, R. M. (1990). Growth stimulation of human breast cancer cells with anti-transforming growth factor β antibodies: Evidence for autocrine negative regulation by transforming growth factor β. Cell Growth & Differentiation, 1, 367–374.
Arteaga, C. L., Hurd, S. D., Winnier, A. R., Johnson, M. D., Fendly, B. M., & Forbes, J. T. (1993). Anti-transforming growth factor (TGF)-β antibodies inhibit breast cancer cell tumorigenicity and increase mouse spleen natural killer cell activity. Implications for a possible role of tumor cell/host TGF-β interactions in human breast cancer progression. Journal of Clinical Investigation, 92, 2569–2576.
Bandyopadhyay, A., Lopez-Casillas, F., Malik, S. N., Montiel, J. L., Mendoza, V., Yang, J., et al. (2002). Antitumor activity of a recombinant soluble betaglycan in human breast cancer xenograft. Cancer Research, 62, 4690–4695.
Bandyopadhyay, A., Wang, L., Lopez-Casillas, F., Mendoza, V., Yeh, I. T., & Sun, L. Z. (2005). Systemic administration of a soluble recombinant betaglycan suppressed tumor growth, angiogenesis, and matrix metalloproteinase expression in a human xenograft model of prostate cancer. Prostate, 63, 81–90.
Bandyopadhyay, A., Zhu, Y., Cibull, M. L., Bao, L. W., Chen, C. G., & Sun, L. Z. (1999). A soluble transforming growth factor β type III receptor suppresses tumorigenicity and metastasis of human breast cancer MDA-MB-231 cells. Cancer Research, 59, 5041–5046.
Bandyopadhyay, A., Zhu, Y., Malik, S. N., Kreisberg, J., Brattain, M. G., Sprague, E. A., et al. (2002). Extracellular domain of TGF-β type III receptor inhibits angiogenesis and tumor growth in human cancer cells. Oncogene, 21, 3541–3551.
Barcellos-Hoff, M. H. (2005). Integrative radiation carcinogenesis: Interactions between cell and tissue responses to DNA damage. Seminars in Cancer Biology, 15, 138–148.
Barrios-Rodiles, M., Brown, K. R., Ozdamar, B., Bose, R., Liu, Z., Donovan, R. S., et al. (2005). High-throughput mapping of a dynamic signaling network in mammalian cells. Science, 307, 1621–1625.
Betticher, D. C., Heighway, J., Haselton, P. S., Altermatt, J. H., Ryder, W. D. J., Cerny, T., et al. (1996). Prognostic significance of CCND1 (cyclin D1) overexpression in primary resected non-small cell lung cancer. British Journal of Cancer, 73, 294–300.
Bhowmick, N. A., Chytil, A., Plieth, D., Gorska, A. E., Dumont, N., Shappell, S., et al. (2004). TGF-β signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science, 303, 775–777.
Biglari, A., Bataille, D., Naumann, U., Weller, M., Zirger, J., Castro, M. G., et al. (2004). Effects of ectopic decorin in modulating intracranial glioma progression in vivo, in a rat syngeneic model. Cancer Gene Therapy, 11, 721–732.
Böttinger, E. P., Jakubczak, J. L., Haines, D. C., Bagnall, K., & Wakefield, L. M. (1997). Transgenic mice overexpressing a dominant-negative mutant type II transforming growth factor β receptor show enhanced tumorigenesis in the mammary gland and lung in response to the carcinogen 7,12-dimethylbenz-[a]-anthracene. Cancer Research, 57, 5564–5570.
Boyer Arnold, N., & Korc, M. (2005). Smad7 abrogates transforming growth factor-β1-mediated growth inhibition in COLO-357 cells through functional inactivation of the retinoblastoma protein. Journal of Biological Chemistry, 280, 21858–21866.
Bretland, A. J., Reid, S. V., Chapple, C. R., & Eaton, C. I. (2001). Role of endogenous transforming growth factor β (TGFβ)1 in prostatic stromal cells. Prostate, 48, 297–304.
Bubb, V. J., Curtis, L. J., Cunningham, C., Dunlop, M. G., Carothers, A. D., Morris, R. G., et al. (1996). Microsatellite instability and the role of hMSH2 in sporadic colorectal cancer. Oncogene, 12, 2641–2649.
Callahan, J. F., Burgess, J. L., Fornwald, J. A., Gaster, L. M., Harling, J. D., Harrington, F. P., et al. (2002). Identification of novel inhibitors of the transforming growth factor β1 (TGF-β1) type 1 receptor (ALK5). Journal of Medicinal Chemistry, 45, 999–1001.
Chen, R. H., Ebner, R., & Derynck, R. (1993). Inactivation of the type II receptor reveals two receptor pathways for the diverse TGF-β activities. Science, 260, 1135–1338.
Chen, T., Carter, D., Garrigue-Antar, L., & Reiss, M. (1998). Transforming growth factor β type I receptor kinase mutant associated with metastatic breast cancer. Cancer Research, 58, 4805–4810.
Chen, T., Triplett, T., Dehner, B., Hurst, B., Colligan, B., Pemberton, J., et al. (2001). Transforming growth factor-β receptor type I gene is frequently mutated in ovarian carcinomas. Cancer Research, 61, 4679–4682.
Chen, T., Yan, W., Wells, R. G., Rimm, D. L., McNiff, J., Leffell, D., et al. (2001). Novel inactivating mutations of transforming growth factor-β type I receptor gene in head-and-neck cancer metastases. International Journal of Cancer, 93, 653–661.
Chen, W. B., Lenschow, W., Tiede, K., Fischer, J. W., Kalthoff, H., & Ungefroren, H. (2002). Smad4/DPC4-dependent regulation of biglycan gene expression by transforming growth factor-β in pancreatic tumor cells. Journal of Biological Chemistry, 277, 36118–38128.
Cheng, N., Bhowmick, N. A., Chytil, A., Gorska, A. E., Brown, K. A., Muraoka, R., et al. (2005). Loss of TGF-β type II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGF-α-, MSP- and HGF-mediated signaling networks. Oncogene, 24, 5053–5068.
Chung, Y. J., Song, J. M., Lee, J. Y., Jung, Y. T., Seo, E. J., Choi, S. W., et al. (1996). Microsatellite instability-associated mutations associate preferentially with the intestinal type of primary gastric carcinomas in a high-risk population. Cancer Research, 56, 4662–4665.
Cohen, P., Nunn, S. E., & Peehl, D. M. (2000). Transforming growth factor-β induces growth inhibition and IGF-binding protein-3 production in prostatic stromal cells: Abnormalities in cells cultured from benign prostatic hyperplasia tissues. Journal of Endocrinology, 164, 215–223.
Cui, W., Fowlis, D. J., Bryson, S., Duffie, E., Ireland, H., Balmain, A., et al. (1996). TGFβ1 inhibits the formation of benign skin tumors but enhances progression to invasive spindle cell carcinomas in transgenic mice. Cell, 86, 531–542.
Cui, Q., Lim, S. K., Zhao, B., & Hoffmann, F. M. (2005). Selective inhibition of TGF-β responsive genes by Smad-interacting peptide aptamers from FoxH1, Lef1 and CBP. Oncogene, 24, 3864–3874.
Da Costa Byfield, S., Major, C., Laping, N. J., & Roberts, A. B. (2004). SB-505124 is a selective inhibitor of transforming growth factor-β type I receptors ALK4, ALK5, and ALK7. Molecular Pharmacology, 65, 744–752.
Dalal, B. I., Keown, P. A., & Greenberg, A. H. (1993). Immunocytochemical localization of secreted transforming growth factor-β1 to the advancing edges of primary tumors and to lymph node metastases of human mammary carcinoma. American Journal of Pathology, 143, 381–389.
Datto, M. B., Frederick, J. P., Pan, L., Borton, A. J., Zhuang, Y., & Wang, X.-F. (1999). Targeted disruption of Smad3 reveals an essential role in transforming growth factor β-mediated signal transduction. Molecular and Cellular Biology, 19, 2495–2504.
Diswas, S., Chytil, A., Washington, K., Romero-Gallo, J., Gorska, A. E., Wirth, P. S., et al. (2004). Transforming growth factor β receptor type II inactivation promotes the establishment and progression of colon cancer. Cancer Research, 64, 4687–4692.
Edlund, S., Bu, S., Schuster, N., Aspenstrom, P., Heuchel, R., Heldin, N.-E., et al. (2003). Transforming growth factor β1-induced apoptosis of prostate cancer cells involves Smad7-dependent activation of p38 by TGF-β-activated kinase 1 and mitogen-activated protein kinase kinase 3. Molecular Biology of the Cell, 14, 529–544.
Edlund, S., Landstrom, M., Heldin, C. H., & Aspenstrom, P. (2004). Smad7 is required for TGF-β-induced activation of the small GTPase Cdc42. Journal of Cell Science, 117, 1835–1847.
Eisma, R. J., Spiro, J. D., von Bilberstein, S. E., Lindquist, R., & Kreutzer, D. L. (1996). Decreased expression of transforming growth factor β receptors on head and neck tumor cells. American Journal of Surgery, 172, 641–645.
Erickson, A. C., & Barcellos-Hoff, M. H. (2003). The not-so innocent bystander: The microenvironment as a therapeutic target in cancer. Expert Opinion on Therapeutic Targets, 7, 71–88.
Ewan, K. B., Oketch-Rabah, H. A., Ravani, S. A., Shyamala, G., Moses, H. L., & Barcellos-Hoff, M. H. (2005). Proliferation of estrogen receptor-α-positive mammary epithelial cells is restained by transforming growth factor β1 in adult mice. American Journal of Pathology, 167, 409–417.
Eyes, P. A., Craxton, M., Morrice, N., Cihen, P., & Goedert, M. (1998). Conversion of SB-203580-insensitive MAP kinase family members to drug sensitive forms by a single amino acid substitution. Chemistry & Biology, 5, 321–328.
Fafeur, V., O'Hara, B., & Böhlen, P. (1993). A glycosylation-deficient endothelial cell mutant with modified responses to transforming growth factor-β and other growth inhibitory cytokines: Evidence for multiple growth inhibitory signal transduction pathways. Molecular Biology of the Cell, 4, 135–144.
Fakhrai, H., Dorigo, O., Shawler, D. L., Lin, H., Mercola, D., Black, K. L., et al. (1996). Eradication of established intracranial rat gliomas by transforming growth factor β antisense gene therapy. Proceedings of the National Academy of Sciences of the United States of America, 93, 2909–2914.
Feng, X., Lin, X., & Derynck, R. (2000). Smad2, Smad3 and Smad4 cooperate with Sp1 to induce p15(Ink4B) transcription in response to TGF-β. EMBO Journal, 19, 5178–5193.
Flanders, K. C., Major, C. D., Arabshahi, A., Aburime, E. E., Okada, M. H., Fujii, M., et al. (2003). Interference with transforming growth factor-β/Smad3 signaling results in accelerated healing of wounds in previously irradiated skin. American Journal of Pathology, 163, 2247–2257.
Flanders, K. C., Sullivan, C. D., Fujii, M., Sowers, A., Anzano, M. A., Arabshahi, A., et al. (2002). Mice lacking Smad3 are protected against cutaneous injury induced by ionizing radiation. American Journal of Pathology, 160, 1057–1068.
Forrester, E., Chytil, A., Bierie, B., Aakre, M., Gorska, A. E., Sharif-Afshar, A. R., et al. (2005). Effect of conditional knockout of the type II TGF-β receptor gene in mammary epithelia on mammary gland development and polyomavirus middle T antigen induced tumor formation and metastasis. Cancer Research, 65, 2296–2302.
Franchi, A., Gallo, O., Sardi, I., & Santucci, M. (2001). Downregulation of transforming growth factor β type II receptor in laryngeal carcinogenesis. Journal of Clinical Pathology, 54, 201–204.
Friedman, E., Gold, L. I., Klimstra, D., Zeng, Z. S., Winawer, S., & Cohen, A. (1995). High levels of transforming growth factor-β1 correlate with disease progression in human colon cancer. Cancer Epidemiology, Biomarkers & Prevention, 4, 549–554.
Gerdes, M. J., Larsen, M., Dang, T. D., Ressler, S. J., Tuxhorn, J. A., & Rowley, D. R. (2004). Regulation of rat prostate stromal cell myodifferentiation by androgen and TGF-β1. Prostate, 58, 299–307.
Glaser, K. B., Li, J., Aakre, M. E., Morgan, D. W., Sheppard, G., Stewart, K. D., et al. (2002). Transforming growth factor β mimetics: discovery of 7-[4-(4-cyanophenyl)phenoxy]-heptanohydroxamin acid, a biaryl hydroxamate inhibitor of histone deacetylase. Mol Cancer Ther, 1, 759–768.
Glick, A. B., Flanders, K. C., Danielpour, D., Yuspa, S. H., & Sporn, M. B. (1989). Retinoic acid induces transforming growth factor-β2 in cultured keratinocytes and mouse epidermis. Cell Regulation, 1, 617–626.
Glick, A. B., Lee, M. M., Darwiche, N., Kulkarni, A. B., Karlsson, S., & Yuspa, S. H. (1994). Targeted deletion of the TGF-β1 gene causes rapid progression to squamous cell carcinoma. Genes & Development, 8, 2429–2440.
Go, C., Li, P., & Wang, X.-J. (1999). Blocking transforming growth factor β signaling in transgenic epidermis accelerates chemical carcinogenesis: A mechanism associated with increased angiogenesis. Cancer Research, 59, 2861–2868.
Gobbi, H., Dupont, W. D., Simpson, J. F., Plummer, W. D., Schuyler, P. A., Olson, S. J., et al. (1999). Transforming growth factor β and breast cancer risk in women with mammary epithelial hyperplasia. Journal of the National Cancer Institute, 91, 2096–2101.
Goggins, M. (1998). Genetic alterations of the transforming growth factor β receptor genes in pancreatic and biliary adenocarcinomas. Cancer Research, 58, 5329–5332.
Gorsch, S. M., Memoli, V. A., Stukel, K. A., Gold, L. I., & Arrick, B. A. (1992). Immunohistochemical for transforming growth factor-β1 associates with disease progression in human breast cancer. Cancer Research, 52, 6949–6952.
Gorska, A. E., Jensen, R. A., Shyr, Y., Aakre, M. E., Bhowmick, N. A., & Moses, H. L. (2003). Transgenic mice expressing a dominant-negative mutant type II transforming growth factor-β receptor exhibit impaired mammary development and enhanced mammary tumor formation. American Journal of Pathology, 163, 1539–1549.
Goto, D., Yagi, K., Inoue, H., Iwamoto, I., Kawabata, M., Miyazono, K., et al. (1998). A single missense mutant of Smad3 inhibits activation of both Smad2 and Smad3, and has a dominant negative effect on TGF-β signals. FEBS Letters, 430, 201–204.
Goumans, M. J., Valdimarsdottir, G., Itoh, S., Lebrin, F., Larsson, J., Mummery, C., et al. (2003). Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFβ/ALK5 signaling. Molecular Cell, 12, 817–828.
Grady, W. M., Myeroff, L. L., Swinler, S. E., Rajput, A., Thiagalingam, S., Lutterbaugh, J. D., et al. (1999). Mutational inactivation of transforming growth factor β receptor type II in microsatellite stable colon cancers. Cancer Research, 59, 320–324.
Groth, S., Schulze, M., Kalthoff, H., Faendrich, F., & Ungefroren, H. (2005). Adhesion and Rac1-dependent regulation of biglycan gene expression by TGF-β. Evidence for oxidative signaling through NADPH oxidase. Journal of Biological Chemistry, 280, 33190–33199.
Hahm, K. B., Cho, K., Lee, C., Im, Y. H., Chang, J., Choi, S. G., et al. (1999). Repression of the gene encoding the TGF-β type II receptor is a major target of the EW-FLIi oncoprotein. Nature Genetics, 23, 222–227.
Hahn, S. A., Hoque, A. T., Moskaluk, C. A., da Costa, L. T., Schulte, M., Rozenblum, E., et al. (1996). Homozygous deletion map at 18q21.1 in pancreatic cancer. Cancer Research, 56, 490–494.
Han, S. U., Kim, H. T., Seong Do, H., Kim, Y. S., Park, Y. S., Bang, Y. J., et al. (2004). Loss of Smad3 expression increases susceptibility to tumorigenicity in human gastric cancer. Oncogene, 23, 1333–1341.
Hata, A., Shi, Y., & Massagué, J. (1998). TGF-β signaling and cancer: Structural and functional consequences of mutations in Smads. Molecular Medicine Today, 4, 257–262.
He, J., Tegen, S. B., Krawitz, A. R., Martin, G. S., & Luo, K. (2003). The transforming activity of Ski and SnoN is dependent on their ability to repress the activity of Smad proteins. Journal of Biological Chemistry, 278, 30540–30547.
Heldin, C.-H. (2004). Development and possible clinical use of antagonists for PDGF and TGF-β. Upsala Journal of Medical Science, 109, 165–178.
Howe, J. R. (1998). Mutations in the Smad4/DPC4 gene in juvenile polyposis. Science, 280, 1086–1088.
Huntley, S., Davies, M., Matthews, J. B., Thomas, G., Marshall, J., Robinson, C. M., et al. (2004). Attenuated type II TGF-β receptor signaling in human malignant oral keratinocytes induces a less differentiated and more aggressive phenotype that is associated with metastatic dissemination. International Journal of Cancer, 110, 170–176.
Iglesias, M., Frontelo, P., Gamallo, C., & Quintanilla, M. (2000). Blockade of Smad4 in transformed keratinocytes containing a Ras oncogene leads to hyperactivation of the Ras-dependent Erk signaling pathway associated with progression to undifferentiated carcinomas. Oncogene, 19, 4134–4145.
Izumoto, S., Arita, N., Ohnishi, T., Hiraga, S., Taki, T., Tomita, N., et al. (1997). Microsatellite instability and mutated type II transforming growth factor-β receptor gene in gliomas. Cancer Letters, 112, 251–256.
Jachimczak, P., Fabel-Schulte, K., Hessdorfer, B., Brysch, W., Schlingensiepen, K. H., Blesch, A., et al. (1995). Transforming growth factor-β-mediated regulation of human peripheral blood mononuclear cell proliferation as detected with phosphorothioate antisense oligodeoxynucleotides. Cellular Immunology, 165, 125–133.
Jachimczak, P., Hessdorfer, B., Fabel-Schulte, K., Wismeth, C., Brysch, W., Schlingensiepen, K. H., et al. (1996). Transforming growth factor-β-mediated autocrine growth regulation of gliomas as detected with phosphorothioate antisense oligonucleotides. International Journal of Cancer, 65, 332–337.
Jakowlew, S. B., Moody, T. W., You, L., & Mariano, J. M. (1998). Reduction in transforming growth factor-β type II receptor in mouse lung carcinogenesis. Molecular Carcinogenesis, 22, 46–56.
Jakowlew, S. B., Moody, T. W., You, L., & Mariano, J. M. (1998). Transforming growth factor-beta expression in mouse lung carcinogenesis. Experimental Lung Research, 24, 579–593.
Kamaraju, A. K., & Roberts, A. B. (2005). Role of Rho/ROCK and p38 MAP kinase pathways in transforming growth factor-β-mediated Smad-dependent growth inhibition of human breast cancer cells in vivo. Journal of Biological Chemistry, 280, 1024–1036.
Kang, S. H., Bang, Y. J., Im, Y. H., Yang, H. K., Lee, D. A., Lee, H. Y., et al. (1999). Transcriptional repression of the transforming growth factor β type I receptor gene by DNA methylation results in the development of TGF-β resistance in human gastric cancer. Oncogene, 18, 7280–7286.
Kang, Y., Mariano, J. M., Andgisen, J., Moody, T. W., Diwan, B. A., Wakefield, L. M., et al. (2000). Enhanced tumorigenesis and reduced transforming growth factor-β type II receptor in lung tumors from mice with reduced gene dosage of transforming growth factor-β1. Molecular Carcinogenesis, 29, 112–126.
Kang, Y., & Massagué, J. (2004). Epithelial–mesenchymal transitions: Twist in development and metastasis. Cell, 118, 277–279.
Kawate, S., Ohwada, S., Hamada, K., Takenoshita, S., Morishita, Y., & Hagiwara, K. (1999). Mutation analysis of the transforming growth factor β type II receptor, Smad2, and Smad4 in hepatocellular carcinoma. International Journal of Oncology, 14, 127–131.
Kim, H.-P., Kim, B.-G., Letterio, J., & Leonard, W. J. (2005). Smad-dependent cooperative regulation of interleukin-2 receptor α chain gene expression by T cell receptor and TGF-β. Journal of Biological Chemistry, 280, 34042–34047.
Kim, K. Y., Kim, B. C., Xu, Z., & Kim, S.-J. (2004). Mixed lineage kinase 3 (MLK3)-activated p38 MAP kinase mediates transforming growth factor-β-induced apoptosis in hepatoma cells. Journal of Biological Chemistry, 279, 29478–29484.
Kim, S.-J., Im, Y.-H., Markowitz, S. D., & Bang, Y. J. (2000). Molecular mechanisms of inactivation of TGF-β receptors during carcinogenesis. Cytokine & Growth Factor Reviews, 11, 159–168.
Kleeff, J., Ishiwata, T., Maruyama, H., Friess, H., Truong, P., Buchler, M. W., et al. (1999). The TGF-β signaling inhibitor Smad7 enhances tumorigenicity in pancreatic cancer. Oncogene, 18, 5363–5372.
Kondo, M., Cubillo, E., Tobiume, K., Shirakihara, T., Fukuda, N., Suzuki, H., et al. (2004). A role for Id in the regulation of TGF-β-induced epithelial–mesenchymal transdifferentiation. Cell Death and Differentiation, 11, 1092–1101.
Kulkarni, A. B., Huh, C. G., Becker, D., Geiser, A., Lyght, M., Flanders, K. C., et al. (1993). Transforming growth factor-β1 null mutation in mice causes excessive inflammatory response and early death. Proceedings of the National Academy of Sciences of the United States of America, 90, 770–774.
Larisch, S., Yi, Y., Lotan, R., Kerner, H., Eimerl, S., Parks, T. W., et al. (2000). A novel mitochondrial septin-like protein, ARTS, mediates apoptosis dependent on its P-loop motif. Nature Cell Biology, 2, 915–921.
Law, B. K., Chytil, A., Dumont, N., Hamilton, E. G., Waltner-Law, M. E., Aakre, M. E., et al. (2002). Rapamycin potentiates transforming growth factor β-induced growth arrest in non-transformed, oncogene-transformed, and human cancer cells. Molecular and Cellular Biology, 22, 8184–8198.
Le Roy, C., & Wrana, J. L. (2005). Signaling and endocytosis: a team effort for cell migration. Developments in Cell, 9, 167–168.
Lebrin, F., Goumans, M. J., Jonker, L., Carvalho, R. L., Valdimarsdottir, G., Thorikay, M., et al. (2004). Endoglin promotes endothelial cell proliferation and TGF-β/ALK1 signal transduction. EMBO Journal, 23, 4018–4028.
Lei, X., Bandyopadhyay, A., Le, T., & Sun, L. (2002). Autocrine TGFβ supports growth and survival of human breast cancer MDA-MB-231 cells. Oncogene, 21, 7514–7523.
Li, J., Kleeff, J., Felix, K., Penzel, R., Buchler, M. W., Korc, M., et al. (2004). Glypican-1 antisense transfection modulates TGF-β-dependent signaling in Colo-357 pancreatic cancer. Biochemical and Biophysical Research Communications, 320, 1148–1155.
Lin, A. H., Luo, J., Mondshein, L. H., ten Dijke, P., Vivien, D., Contag, C. H., et al. (2005). Global analysis of Smad2/3-dependent TGF-β signaling in living mice reveals prominent tissue-specific responses to injury. Journal of Immunology, 175, 547–554.
Liu, X., Lee, J., Cooley, M., Bhogte, E., Hartley, S., & Glick, A. (2003). Smad7 but not Smad6 cooperates with oncogenic ras to cause malignant conversion in a mouse model for squamous cell carcinoma. Cancer Research, 63, 7760–7768.
Lonardo, F., Rusch, V., Langenfeld, J., Dmitrovsky, E., & Klimstra, D. S. (1999). Overexpression of cyclins D1 and E is frequent in bronchial preneoplasia and precedes squamous cell carcinoma development. Cancer Research, 59, 2470–2476.
Lu, S. L., Zhang, W. C., Akiyama, Y., Nomizu, T., & Yuasa, Y. (1996). Genomic structure of the transforming growth factor β type II receptor gene and its mutations in hereditary nonpolyposis colorectal cancers. Cancer Research, 56, 4595–4598.
Luttges, J., Galehdari, H., Brocker, V., Schwarte-Waldhoff, I., Henne-Bruns, D., Kloppel, G., et al. (2001). Allelic loss is often the first hit in the biallelic inactivation of the p53 and DPCβ4 genes during pancreatic carcinogenesis. American Journal of Pathology, 158, 1677–1683.
Maitra, A., Molberg, K., Albores-Saavedra, J., & Lindberg, G. (2000). Loss of Dpc4 expression in colonic adenocarcinomas correlates with the presence of metastatic disease. American Journal of Pathology, 157, 1105–1111.
Marie, J. C., Letterio, J. J., Gavin, M., & Rudensky, A. Y. (2005). TGF-β1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. Journal of Experimental Medicine, 201, 1061–1067.
Markowitz, S., Wang, J., Myeroff, L., Parsons, R., Sun, L., Lutterbaugh, J., et al. (1995). Inactivation of the type II TGF-β receptor in colon cancer cells with microsatellite instability. Science, 268, 1336–1338.
Marzo, A. L., Fitzpatrick, D. R., Robinson, B. W., & Scott, B. (1997). Antisense oligonuceotides specific for transforming growth factor β2 inhibit the growth of malignant mesothelioma both in vitro and in vivo. Cancer Research, 57, 3200–3207.
Massagué, J., Blain, S. W., & Lo, R. S. (2000). TGF-β signaling in growth control, cancer, and heritable disorders. Cell, 103, 295–309.
Matsuyama, S., Iwadate, M., Kondo, M., Saitoh, M., Hanyu, A., Shimizu, K., et al. (2003). SB-431542 and Gleevec inhibit transforming growth factor-β-induced proliferation of human osteosarcoma cells. Cancer Research, 63, 7791–7798.
Maytin, E. V., Ubeda, M., Lin, J. C., & Habener, J. F. (2001). Stress-inducible transcription factor CHOP/GADD153 induces apoptosis in mammalian cells via p38 kinase-dependent and -independent mechanisms. Experimental Cell Research, 267, 193–204.
Minn, A. J., Gupta, G. P., Siegel, P. M., Bos, P. D., Shu, W., Giri, D. D., et al. (2005). Genes that mediate breast cancer metastasis to lung. Nature, 436, 518–524.
Minn, A. J., Kang, Y., Serganova, I., Gupta, G. P., Giri, D. D., Doubrovin, M., et al. (2005). Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. Journal of Clinical Investigation, 115, 44–55.
Morén, A., Itoh, S., Moustakas, A., ten Dijke, P., Heldin, C.-H. (2000). Functional consequences of tumorigenic missense mutations in the amino-terminal domain of Smad4. Oncogene, 19, 4396–4404.
Mori, N., Morishita, M., Tsukazaki, T., Giam, C. Z., Kumatori, A., Tanaka, Y., et al. (2001). Human T-cell leukemia virus type I oncoprotein Tax represses Smad-dependent transforming growth factor β signaling through interaction with CREB-binding protein/p300. Blood, 97, 2137–2144.
Moses, H. L., Tucker, R. F., Leof, E. B., Coffey, R. J. Jr., Halper, J., & Shipley, G. D. (1985). Type β transforming growth factor is a growth stimulator and a growth inhibitor. In J. Feramisco, B. Ozanne & C. Stiles (Eds.), Cancer Cells 3. (pp. 67–71). Cold Spring Harbor, Cold Spring Harbor Laboratory.
Moustakas, A., & Heldin, C.-H. (2005). Non-Smad TGF-β signals. Journal of Cell Science, 118, 3573–3584.
Murakami, S., Takashima, H., Sato-Watanabe, M., Chonan, S., Yamamoto, K., Saitoh, M., et al. (2004). Ursolic acid, an antagonist for transforming growth factor (TGF)-β1. FEBS Letters, 566, 55–59.
Muraoka, R. S., Dumont, N., Ritter, C. A., Dugger, T. C., Brantley, D. M., Chen, J., et al. (2002). Blockade of TGF-β inhibits mammary tumor cell viability, migration, and metastasis. Journal of Clinical Investigation, 109, 1551–1559.
Muraoka, R. S., Koh, Y., Roebuck, L. R., Sanders, M. E., Brantley-Sieders, D., Gorska, A. E., et al. (2003). Increased malignancy of neu-induced mammary tumors overexpressing active transforming growth factor β1. Molecular and Cellular Biology, 23, 8691–8703.
Muraoka-Cook, R. S., Kurokawa, H., Koh, Y., Rorbes, J. T., Roebuck, L. R., Barcellos-Hoff, M. H., et al. (2004). Conditional overexpression of active transforming growth factor β1 accelerates metastases of transgenic mammary tumors. Cancer Research, 64, 9002–9011.
Nakata, D., Hamada, J., Ba, Y., Matsushita, K., Shibata, T., Hosokawa, M., et al. (2002). Enhancement of tumorigenic, metastatic and in vitro invasive capacity of rat mammary tumor cells by transforming growth factor-β. Cancer Letters, 175, 95–106.
Niu, Y., Xu, Y., Zhang, J., Bai, J., Yang, H., & Ma, T. (2001). β Proliferation and differentiation of prostatic stromal cells. British Journal of Urology International, 87, 386–393.
Norgaard, P., Hougaard, S., Poulsen, H. S., & Spang-Thomsen, M. (1995). Transforming growth factor β and cancer. Cancer Treatment Reviews, 21, 367–403.
Oft, M., Heider, K. H., & Beug, H. (1998). TGFβ signaling is necessary for carcinoma cell invasiveness and metastasis. Current Biology, 8, 1243–1252.
Okamoto, A., Jiang, W., Kim, S.-J., Spillare, E. A., Stoner, G. D., Weinstein, I. B., et al. (1994). Overexpression of human cyclin D1 reduces the transforming growth factor β (TGF-β) type II receptor and growth inhibition by TGF-β1 in an immortalized human esophageal epithelial cell line. Proceedings of the National Academy of Sciences of the United States of America, 91, 11576–11580.
Ozdamar, B., Bose, R., Barrios-Rodiles, M., Wang, H. R., Zhang, Y., & Wrana, J. L. (2005). Regulation of the polarity protein Par6 by TGFβ receptors controls epithelial cell plasticity. Science, 307, 1603–1609.
Pardali, K., Kowanetz, M., Heldin, C.-H., & Moustakas, A. (2005). Smad pathway-specific transcriptional regulation of the cell cycle inhibitor p21(WAF1/Cip1). Journal of Cellular Physiology, 204, 260–272.
Pardali, K., Kurisaki, A., Morén, A., ten Dijke, P., Kardassis, D., & Moustakas, A. (2000). Role of smad proteins and transcription factor Sp1 in p21(Waf1/Cip1) regulation by transforming growth factor β. Journal of Biological Chemistry, 275, 29244–29256.
Parekh, T. V., Gama, P., Wen, X., Demopoulos, R., Munger, J. S., Carcangiu, M. L., et al. (2002). Transforming growth factor β signaling is disabled early in human endometrial carcinogenesis concomitant with loss of growth inhibition. Cancer Research, 62, 2778–2790.
Park, J. A., Wang, E., Kurt, R. A., Schluter, S. F., Hersh, E. M., Akporiaye, E. T. (1997). Expression of an antisense transforming growth factor-β1 transgene reduces tumorigenicity of EMT6 mammary tumor cells. Cancer Gene Therapy, 4, 42–50.
Pece-Barbara, N., Vera, S., Kathirkamathamby, K., Liebner, S., Di Gugliemo, G. M., Dejana, E., et al. (2005). Endoglin null endothelial cells proliferate and are more responsive to transforming growth factor β with higher affinity receptors and an activated ALK1 pathway. Journal of Biological Chemistry, 280, 27800–27808.
Peng, S. B., Yan, L., Xia, X., Watkins, S. A., Brooks, H. B., Beight, D., et al. (2005). Kinetic characterization of novel pyrazole TGF-β receptor I kinase inhibitors and their blockade of the epithelial–mesenchymal transition. Biochemistry, 44, 2293–2304.
Pertovaara, L., Kaipainen, A., Mustonen, T., Orpana, A., Ferrara, N., Saksela, O., et al. (1994). Vascular endothelial growth factor is induced in response to transforming growth factor β in fibroblastic and epithelial cells. Journal of Biological Chemistry, 269, 6271–6274.
Picon, A., Gold, L. I., Wang, J., Cohen, A., & Friedman, E. (1998). A subset of human colon cancers express elevated levels of transforming growth factor-β1. Cancer Epidemiology, Biomarkers & Prevention, 7, 497–505.
Pierce, D. F., Gorska, A. E. Jr., Chytil, A., Meise, K. S., Page, D. L., Coffey, R. J., et al. (1995). Mammary tumor suppression by transforming growth factor β1 transgene expression. Proceedings of the National Academy of Sciences of the United States of America, 92, 4254–4258.
Pietenpol, J. A., Stein, R. W., Moran, E., Yaciuk, P., Schlegel, R., Lyons, R. M., et al. (1990). TGF-β1 inhibition of c-myc transcription and growth in keratinocytes is abrogated by viral transforming proteins with pRB binding domains. Cell, 61, 777–785.
Platten, M., Wild-Bode, C., Wick, W., Leitlein, J., Dichgans, J., & Weller, M. (2001). N-[3,4-dimethyloxycinnamoyl]-anthranilic acid (tranilast) inhibits transforming growth factor-β release and reduces migration and invasiveness of human malignant glioma cells. International Journal of Cancer, 93, 53–61.
Prunier, C., Ferrand, N., Frottier, B., Pessah, M., & Atfi, A. (2001). A mechanism for mutational inactivation of the tumor suppressor Smad2. Molecular and Cellular Biology, 21, 3302–3313.
Prunier, C., Mazars, A., Noe, V., Bruyneel, E., Mareel, M., Gespach, C., et al. (1999). Evidence that Smad2 is a tumorsuppressor implicated in the control of cellular invasion. Journal of Biological Chemistry, 274, 22919–22922.
Reiss, M. (1999). TGF-β and cancer. Microbes and Infection, 1, 1327–1347.
Rich, J. N., Zhang, M., Datto, M. B., Bigner, D. D., & Wang, X.-F. (1999). Transforming growth factor-β-mediated p15(INK4B) induction and growth inhibition in astrocytes is Smad3-dependent and a pathway prominently altered in human glioma cell lines. Journal of Biological Chemistry, 274. 35053–35058.
Riggins, G. J., Thiagalingam, S., Rozenblum, E., Weinsten, C. L., Kern, S. E., Hamilton, S. R., et al. (1996). Mad-related genes in the human. Nature, 13, 347–349.
Roberts, A. B., Piek, E., Böttinger, E. P., Ashcroft, G., Mitchell, J. B., & Flanders, K. C. (2001). Is Smad3 a major player in signal transduction pathways leading to fibrogenesis? Chest, 120, 43S–47S.
Roberts, A. B., & Wakefield, L. M. (2003). The two faces of transforming growth factor β in carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 100, 8621–8623.
Rowland-Goldsmith, M. A., Maruyama, H., Kusama, T., Ralli, S., & Korc, M. (2001). Soluble type II transforming growth factor-β (TGF-β) receptor inhibits TGF-β signaling in COLO-357 pancreatic cancer cells in vitro and attenuates tumor formation. Clinical Cancer Research, 7, 2931–2940.
Rowland-Goldsmith, M. A., Maruyama, H., Matsuda, K., Idezawa, T., Ralli, M., Ralli, S., et al. (2002). Soluble type II transforming growth factor-β receptor attenuates expression of metastasis-associated genes and suppresses pancreatic cancer cell metastasis. Mol Cancer Ther, 1, 161–167.
Sabourin, C. L. K., Wang, O.-S., Ralston, S. L., Evans, J., Coate, J., Herzog, C. R., et al. (1998). Expression of cell cycle proteins in 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced mouse lung tumors. Experimental Lung Research, 24, 499–521.
Saito, H., Tsujitani, S., Oka, S., Kondo, A., Ikeguchi, M., Maeta, M., et al. (2000). An elevated serum level of transforming growth factor-β1 (TGF-β1) significantly correlated with lymph node matastasis and poor prognosis in patients with gastric carcinoma. Anticancer Research, 20, 4489–4493.
Scandura, J. M., Boccuni, P., Massagué, J., & Nimer, S. D. (2004). Transforming growth factor β-induced cell cycle arrest of human hematopoietic cells requires p57KIP2 up-regulation. Proceedings of the National Academy of Sciences of the United States of America, 101, 15231–15236.
Schiemann, W. P., Pfeifer, W. M., Levi, E., Kadin, M. E., & Lodish, H. F. (1999). A deletion in the gene for transforming growth factor β type I receptor abolishes growth regulation by transforming growth factor β in a cutaneous T-cell lymphoma. Blood, 94, 2854–2861.
Schlingensiepen, R., Goldbrunner, M., Szyrach, M. N., Stauder, G., Jachimczak, P., Bogahn, U., et al. (2005). Intracerebral and intrathecal infusion of the TGF-β2-specific antisense phosphorothioate oligonucleotide AP12009 in rabbits and primates. Oligonucleotides, 15, 94–104.
Schulte-Hermann, R., Bursch, W., Kraupp-Grasl, B., Oberhammer, F., Wagner, A., & Jirtle, R. (1993). Cell proliferation and apoptosis in normal liver and preneoplastic foci. Environmental Health Perspectives, 101 (Suppl 5), 87–90.
Seon, B. K., Matsuno, F., Haruta, Y., Kondo, M., & Barcos, M. (1997). Long-lasting complete inhibition of human solid tumors in SCID mice by targeting endothelial cells of tumor vasculature with antihuman endoglin immunotoxin. Clinical Cancer Research, 3, 1031–1044.
Shull, M. M., Ornsby, I., Kier, A. B., Pawlowski, S., Diebold, R. J., Yin, M., et al. (1992). Targeted disruption of the mouse transforming growth factor-β1 gene results in inflammatory disease. Nature, 359, 693–699.
Siegel, P. M., Shu, W., Cardiff, R. D., Muller, W. J., & Massagué, J. (2003). Transforming growth factor β signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proceedings of the National Academy of Sciences of the United States of America, 100, 8430–8435.
Singh, J., Chuaqui, C. E., Boriack-Sjodin, P. A., Lee, W. C., Pontz, T., Corbley, M. J., et al. (2003). Successful shape-based virtual screening: The discovery of a potent inhibitor of the type I TGFβ receptor kinase (TβRI). Bioorganic & Medicinal Chemistry Letters, 13, 4355–4359.
Sirard, C., Kim, S., Mirtsos, C., Tadich, P., Hoodless, P. A., Itie, A., et al. (2000). Targeted disruption in murine cells reveals variable requirement for Smad4 in transforming growth factor β-related signaling. Journal of Biological Chemistry, 275, 2063–2070.
Sosroseno, W., & Herminajeng, E. (1995). The immunoregulatory roles of transforming growth factor β. British Journal of Biomedical Science, 52, 142–148.
Stander, M., Naumann, U., Dumitrescu, L., Heneka, M., Loschmann, P., Gulbins, E., et al. (1998). Decorin gene transfer-mediated suppression of TGF-β synthesis abrogates experimental malignant glioma growth in vivo. Gene Therapy, 5, 1187–1194.
Stearns, M. E., Garcia, F. U., Fudge, K., Rhim, J., & Wang, M. (1999). Role of interleukin 10 and transforming growth factor β1 in the angiogenesis and metastasis of human prostate primary tumor cell lines from orthotopic implants in severe combined immunodeficiency mice. Clinical Cancer Research, 5, 711–720.
Story, M. T., Hopp, K. A., & Meier, D. A. (1996). Regulation of basic fibroblast growth factor expression by transforming growth factor β in cultured human prostate stromal cells. Prostate, 28, 219–226.
Subramanian, G., Schwarz, R. E., Higgins, L., McEnroe, G., Chakravarty, S., Dugar, S., et al. (2004). Targeting endogenous transforming growth factor β receptor signaling in Smad4-deficient human pancreatic carcinoma cells inhibits their invasive phenotype. Cancer Research, 64, 5200–5211.
Suh, N., Roberts, A. B., Birkey Reffey, S., Miyazono, K., Itoh, S., ten Dijke, P., et al. (2003). Synthetic triterpenoids enhance transforming growth factor β /Smad signaling. Cancer Research, 63, 1371–1376.
Sun, L., Wu, G., Willson, J. K., Zborowska, E., Yang, J., Rajkarunanayake, I., et al. (1994). Expression of transforming growth factor β type II receptor leads to reduced malignancy in human breast cancer MCF-7 cells. Journal of Biological Chemistry, 269, 26449–26455.
Takaku, K., Miyoshi, H., Matsunaga, A., Oshima, M., Sasaki, N., & Taketo, M. M. (1999). Gastric and duodenal polyps in Smad4 (Dpc4) knockout mice. Cancer Research, 59, 6113–6117.
Takanami, I., Tanaka, F., Hashizume, & T., Kodaira, S. (1997). Roles of the transforming growth factor-β1 and its type I and II receptors in the development of a pulmonary adenocarcinoma: results of an immunohistochemical study. Journal of Surgical Oncology, 64, 262–267.
Takekawa, M., Tatebayashi, K., Itoh, F., Adachi, M., Imai, K., & Saito, H. (2002). Smad-dependent GADD45β expression mediates delayed activation of p38 MAP kinase by TGF-β. EMBO Journal, 21, 6473–6482.
Tang, B., Böttinger, E. P., Jakowlew, S. B., Bagnall, K. M., Mariano, J., Anver, M. R., et al. (1998). Transforming growth factor-β1 is a new form of tumor suppressor with true haploid insufficiency. Natural Medicines, 4, 802–807.
Tang, B., de Castro, K., Barnes, H. E., Parks, W. T., Stewart, L., Böttinger, E. P., et al. (1999). Loss of responsiveness to transforming growth factor β induces malignant transformation of nontumorigenic rat prostate epithelial cells. Cancer Research, 59, 4834–4842.
Tang, B. W., Vu, M., Booker, T., Santer, S. J., Miller, F. R., Anver, M. R., et al. (2003). TGF-β switches from tumor suppressor to prometastatic factor in a model of breast cancer progression. Journal of Clinical Investigation, 112, 1116–1124.
Tian, F., Byfield, S. D., Parks, W. T., Stuelten, C. H., Nemani, D., Zhang, Y. E., et al. (2004). Smad-binding defective mutant of transforming growth factor β type I receptor enhances tumorigenesis but suppresses metastasis of breast cancer cell lines. Cancer Research, 64, 4523–4530.
Tian, F., DaCosta Byfield, S., Parks, W. T, Yoo, S., Felici, A., Tang, B., et al. (2003). Reduction in Smad2/3 signaling enhances tumorigenesis but suppressed metastasis of breast cancer cell lines. Cancer Research, 63. 8284–8292.
Torre-Amione, G., Neauchamp, R. D., Koeppen, B. H., Park, H., Schreiber, H., Moses, H. L., et al. (1990). A highly immunogenic tumor transfected with a murine transforming growth factor β1 cDNA escapes immune surveillance. Proceedings of the National Academy of Sciences of the United States of America, 87, 1486–1490.
Tu, W. H., Thomas, T. Z., Masumori, N., Bhowmick, N. A., Gorska, A. E., Shyr, Y., et al. (2003). The loss of TGF-β signaling promotes prostate cancer metastasis. Neoplasia, 5, 267–277.
Tucker, R. F., Shipley, G. D., Moses, H. L., & Holley, R. W. (1984). Growth inhibitor from BSC-1 cells closely related to type β transforming growth factor. Science, 226, 705–707.
Turco, A., Coppa, A., Aloe, S., Baccheschi, G., Morrone, S., Zupi, G., et al. (1999). Overexpression of transforming growth factor β-type II receptor reduces tumorigenicity and metastatic potential of K-ras-transformed thyroid cells. International Journal of Cancer, 80, 85–91.
Tuxhorn, J. A., McAlhany, S. J., Yang, F., Dang, T. D., & Rowley, D. R. (2002). Inhibition of transforming growth factor-β activity decreases angiogenesis in a human prostate cancer-reactive stroma xenograft model. Cancer Research, 62, 6021–6025.
Uchida, K., Nagatake, M., Osada, H., Yatabe, Y., Kondo, M., Mitsudomi, T., et al. (1996). Somatic in vivo alterations of the JV18-1 gene at 18q21 in human lung cancers. Cancer Research, 56, 5583–5585.
Ueki, N., Nakazato, M., Ohkawa, T., Ikeda, T., Amuro, Y., Hada, T., et al. (1992). Excessive production of transforming growth factor β1 can play an important role in the development of tumorigenesis by its action for angiogenesis. Validity of neutralizing antibodies to block tumor growth. Biochimica et Biophysica Acta, 1137, 189–196.
Uhl, M., Aulwurm, S., Wischhusen, J., Weiler, M., Ma, J. Y., Almirez, R., et al. (2004). SD-208, a novel transforming growth factor β receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Cancer Research, 64, 7954–7961.
Valcourt, U., Kowanetz, M., Niimi, H., Heldin, C.-H., & Moustakas, A. (2005). TGF-β and the Smad signaling pathway support transcriptomic reprogramming during epithelial–mesenchymal cell transition. Molecular Biology of the Cell, 16, 1987–2002
Vijaychandra, K., Lee, J., & Glick, A. (2003). Smad3 regulates senescence and malignant conversion in a mouse multistage skin carcinogenesis model. Cancer Research, 63, 3447–3452.
Vincent, F., Hagiwara, K., Ke, Y., Stoner, G. D., Demetrick, D. J., & Bennett, W. P. (1996). Mutation analysis of the transforming growth factor β type II receptor in sporadic human cancers of the pancreas, liver, and breast. Biochemical and Biophysical Research Communications, 223, 561–564.
Von Pfeil, A., Hakenjos, L., Herskind, C., Dittmann, K., Weller, M., & Rodemann, H. P. (2002). Irradiated homozygous TGF-β1 knockout fibroblasts show enhanced clonogenic survival as compared with TGF-β1 wild-type fibroblasts. International Journal of Radiation Oncology, 78, 331–339.
Wang, J., Han, W., Zborowska, E., Liang, J., Wang, X., Willson, J. K. V., et al. (1996). Reduced expression of transforming growth factor β type I receptor contributes to the malignancy of human colon carcinoma cells. Journal of Biological Chemistry, 271, 17366–17371.
Wang, J., Sun, L., Myeroff, L., Wang, X., Gentry, L. E., Yang, J., et al. (1995). Demonstration that mutation of the type II transforming growth factor β receptor inactivates its tumor suppressor activity in replication error-positive colon carcinoma cells. Journal of Biological Chemistry, 270, 22044–22049.
Weeks, B. H., He, W., Olson, K. L., & Wang, X. J. (2001). Inducible expression of transforming growth factor β1 in papillomas causes rapid metastasis. Cancer Research, 61, 7435–7443.
Welch, D., Fabra, A., & Nakajima, M. (1990). Transforming growth factor β stimulates mammary adenocarcima cell invasion and metastatic potential. Proceedings of the National Academy of Sciences of the United States of America, 87, 7678–7682.
Wick, W., Platten, M., & Weller, M. (2001). Glimoa cell invasion: Regulation of metalloproteinase activity by TGF-β. Journal of Neuro-oncology, 53, 177–185.
Willson, K. P., McCaffrey, P. G., Hsiao, K., Pazhanisamy, S., Galullo, V., Bemis, G. W., et al. (1997). The structural basis for the specificity of pyridinylimidazole inhibitors of p38 MAP kinase. Chemistry & Biology, 4, 423–431.
Wojtowicz-Praga, S., Verma, U. N., Wakefield, L., Esteban, J. M., Hatmann, D., & Mazumder, A. (1996). Modulation of B16 melanoma growth and metastasis by anti-transforming growth factor β antibody and interleukin-2. Journal of Immunotherapy with Emphasis on Tumor Immunology, 19, 169–175.
Wolfraim, L. A., Fernandez, T. M., Mamura, M., Fuller, W. L., Kumar, R., Cole, D. E., et al. (2004). Loss of Smad3 in acute T-cell lymphoblastic leukemia. New England Journal of Medicine, 351, 528–530.
Wolfraim, L. A., Walz, T. M., James, Z., Fernandez, T., & Letterio, J. J. (2004). p21Cip1 and p27Kip1 act in synergy to alter the sensitivity of naïve T-cells to TGF-β-mediated G1 arrest through modulation of IL-2 responsiveness. Journal of Immunology, 173, 3093–3102.
Wu, S. P., Sun, L. Z., Wilson, J. K., Humphrey, J. L., Kerbel, R. S., & Brattain, M. G. (1993). Repression of autocrine transforming growth factor β1 and β2 in quiescent CBS colon carcinoma cells leads to progression of tumorigenic properties. Cell Death & Differentiation, 4, 115–123.
Xavier, S., Piek, E., Fujii, M., Javelaud, J., Mauviel, A., Flanders, K. C., et al. (2004). Amelioration of radiation-induced fibrosis. Journal of Biological Chemistry, 279, 15167–15176.
Xie, L., Law, B. K., Aakre, M. E., Edgerton, M., Shyr, Y., Bhowmick, N. A., et al. (2003). Transforming growth factor β-regulated gene expression in a mouse mammary gland epithelial cell line. Breast Cancer Research, 5, R187–R198.
Xie, L., Law, B. K., Chyti, A. M., Brown, K. A., Aakre, M. E., & Moses, H. L. (2004). Activation of the Erk pathway is required for TGF-β1-induced EMT in vitro. Neoplasia, 6, 603–610.
Xie, W., Bharathy, S., Kim, D., Haffty, B. G., Rimm, D. L., & Reiss, M. (2003). Frequent alterations of Smad signaling in human head and neck squamous cell carcinomas: a tissue microarray study. Oncology Research, 14, 61–73.
Xie, W., Mertens, J. C., Reiss, D. J., Rimm, D. L., Camp, R. L., Haffty, B. G., et al. (2002). Alterations of Smad signaling in human breast carcinoma are associated with poor outcome: A tissue microarray study. Cancer Research, 62, 497–505.
Xie, W., Rimm, D. L., Lin, Y., Shih, W. J., & Reiss, M. (2003). Loss of Smad signaling in colorectal cancer is associated with advanced disease and poor prognosis. Cancer Journal, 9, 302–312.
Xu, X., Brodie, S. G., Yang, X., Im, Y. H., Parks, W. T., Chen, L., et al. (2000). Haploid loss of the tumor suppressor Smad4/Dpc4 initiates gastric polyposis and cancer in mice. Oncogene, 19, 1868–1874.
Yagi, K., Furuhashi, M., Aoki, H., Goto, D., Kuwano, H., Sugamura, K., et al. (2002). C-myc is a downstream target of the Smad pathway. Journal of Biological Chemistry, 277, 854–861.
Yakymovych, I., Engstrom, U., Grimsby, S., Heldin, C.-H., & Souchelnytskyi, S. (2002). Inhibition of transforming growth factor-β signaling by low molecular weight compounds interfering with ATP- or substrate-binding sites of the TGF β type I receptor kinase. Biochemistry, 41, 11000–11007.
Yan, W., Vellucci, V. F., & Reiss M. (2000). Smad protein expression and activation in transforming growth factor-β refractory human squamous cell carcinoma cells. Oncology Research, 12, 157–167.
Yananaka, R., Tanaka, R., Yoshida, S., Saitoh, T., Fujita, K., & Naganuma, H. (1999). Suppression of TGF-β1 in human gliomas by retroviral gene transfection enhances susceptibility to LAK cells. Journal of Neuro-Oncology, 43, 27–34.
Yang, E. Y., & Moses, H. L. (1999). Transforming growth factor β1-induced changes in cell migration, proliferation, and angiogenesis in the chicken chorioallantoic membrane. Journal of Cell Biology, 111, 731–741.
Yang, J., Mani, S. A., Donaher, J. L., Ramaswamy, S., Itzykson, R. A., Come, C., et al. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell, 117, 927–939.
Yang, X., Letterio, J. J., Lechleider, R. J., Chen, L., Hayman, R., Gu, H., et al. (1999). Targeted disruption of Smad3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-β. EMBO Journal, 18, 1280–1291.
Yang, Y. A., Dukhanina, O., Tang, B., Mamura, M., Letterio, J. J., MacGregor, J., et al. (2002). Lifetime exposure to a soluble TGF-β antagonist protects mice against metastasis without adverse side effects. Journal of Clinical Investigation, 109, 1607–1615.
Yin, J. J., Selender, K., Chirgwin, J. M., Dallas, M., Grubbs, B. G., Wieser, R., et al. (1999). TGF-β signaling blackade inhibits PTHrP secretion by breast cancer cells and bone metastases development. Journal of Clinical Investigation, 103, 197–206.
Yingling, J. M., Blanchard, K. L., & Sawyer, J. S. (2004). Development of TGF-β signalling inhibitors for cancer therapy. Nat Rev Drug Discov, 3, 1011–1022.
Yoo, J., Ghiassi, M., Jirmanova, L., Balliet, A. G., Hoffman, B., Fornace, A. J. Jr., et al. (2003). Transforming growth factor β1-induced apoptosis is mediated by Smad-dependent expression of GADD45b through p38 activation. Journal of Biological Chemistry, 278, 43001–43007.
Yu, L., Herbert, M. C., & Zhang, Y. E. (2002). TGF-β receptor-activated p38 MAP kinase mediates Smad-independent TGF-β responses. EMBO Journal, 21, 3749–3759.
Zhao, W. L., Kobayashi, M., Ding, W., Yuan, L., Seth, P., Cornain, S., et al. (2002). Suppression of in vivo tumorigenicity of rat hepatoma cell line KDH-8 cells by soluble TGF-β receptor type II. Cancer Immunology and Immunotherapy, 51, 381–388.
Zhou, W., Park, I., Pins, M., Kozlowski, J. M., Jovanovic, B., Zhang, J., et al. (2003). Dual regulation of proliferation and growth arrest in prostatic stromal cells by transforming growth factor-β1. Endocrinology, 144, 4280–4284.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jakowlew, S.B. Transforming growth factor-β in cancer and metastasis. Cancer Metastasis Rev 25, 435–457 (2006). https://doi.org/10.1007/s10555-006-9006-2
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10555-006-9006-2