Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The molecular basis of the adsorption of xylans on cellulose surface

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In order to model the adsorption of xylan on cellulose, we have simulated, at the atomic level, the gas phase adsorption of small xylan fragments having 5 skeletal β (1 → 4) xylosyl residues (X5), using molecular dynamics simulations. A first regime was considered, corresponding to a low surface coverage, with the adsorption of isolated X5 in various initial orientations. In this regime, the simulation indicated that X5 moved toward extended conformations, some of them being helical, with the possibility of either 21 or left-handed 31 helices. During the simulation, the X5 fragments became preferentially oriented, parallel or anti parallel with respect to the cellulose chain axis. Substitution of the X5 backbone by either GlcA and/or Araf side chains had no major influence on either the conformation or the efficiency of the interaction. However, the presence of side chains favored orientations of the X5 backbone inclined with respect to the cellulose chain axis. In a second regime corresponding to monolayer coverage, the geometrical features of the adsorption of the xylan fragments on cellulose was roughly the same as that in the individual coverage situation. In this case, the monolayer became equilibrated at 0.14 g of xylan fragments for each g of cellulose, a figure that compared favourably with the values obtained in experimental adsorption of xylan on bacterial cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Find the latest articles, discoveries, and news in related topics.

References

  • Baker AA, Helbert W, Sugiyama J, Miles MJ (1997) High-resolution atomic force microscopy of native Valonia cellulose I microcrystals. J Struct Biol 119(2):129–138

    Article  CAS  Google Scholar 

  • Bergenstrahle M, Wohlert J, Larsson PT, Mazeau K, Berglund LA (2008) Dynamics of cellulose-water interfaces: NMR spin-lattice relaxation times calculated from atomistic computer simulations. J Phys Chem B 112(9):2590–2595

    Article  Google Scholar 

  • Caddeo C, Melis C, Colombo L, Mattoni A (2010) Understanding the helical wrapping of poly(3-hexylthiophene) on Carbon nanotubes. J Phys Chem C 114(49):21109–21113

    Article  CAS  Google Scholar 

  • Chanzy H, Dubé M, Marchessault RH (1979) Structural polymorphism of (1→4)-β-D-xylan. Polymer 20(8):1037–1039

    Article  CAS  Google Scholar 

  • Connolly ML (1985) Computation of molecular volume. J Am Chem Soc 107(5):1118–1124

    Article  CAS  Google Scholar 

  • Ebringerova A (2006) Structural diversity and application potential of hemicelluloses. Macromol Symp 232:1–12

    Article  CAS  Google Scholar 

  • Ebringerova A, Heinze T (2000) Xylan and xylan derivatives—biopolymers with valuable properties. 1. Naturally occurring xylans structures, isolation procedures and properties. Macromol Rapid Commun 21(9):542–556

    Article  CAS  Google Scholar 

  • Evans DJ, Holian BL (1985) The Nose-Hoover thermostat. J Chem Phys 83(8):4069–4074

    Article  CAS  Google Scholar 

  • Faure R, Courtin CM, Delcour JA, Dumon C, Faulds CB, Fincher GB, Fort S, Fry SC, Halila S, Kabel MA, Pouvreau L, Quemener B, Rivet A, Saulnier L, Schols HA, Driguez H, O’Donohue MJ (2009) A brief and informationally rich naming system for oligosaccharide motifs of heteroxylans found in plant cell walls. Aust J Chem 62(6):533–537

    Article  CAS  Google Scholar 

  • French AD, Dowd MK (1993) Exploration of disaccharide conformations by molecular mechanics. J Mol Struc Theochem 286(1–3):183–201

    Article  Google Scholar 

  • French AD, Johnson GP (2009) Cellulose and the twofold screw axis: modeling and experimental arguments. Cellulose 16(6):959–973

    Article  CAS  Google Scholar 

  • Hanus J, Mazeau K (2006) The xyloglucan-cellulose assembly at the atomic scale. Biopolymers 82(1):59–73

    Article  CAS  Google Scholar 

  • Henao L, Mazeau K (2008) The molecular basis of the adsorption of bacterial exopolysaccharides on montmorillonite mineral surface. Mol Simul 34(10–15):1185–1195

    Article  CAS  Google Scholar 

  • Henao LJ, Mazeau K (2009) Molecular modelling studies of clay-exopolysaccharide complexes: soil aggregation and water retention phenomena. Mater Sci Eng C 29(8):2326–2332

    Article  CAS  Google Scholar 

  • Henriksson A, Gatenholm P (2001) Controlled assembly of glucuronoxylans onto cellulose fibres. Holzforschung 55(5):494–502

    Article  CAS  Google Scholar 

  • Kabel MA, van den Borne H, Vincken J-P, Voragen AGJ, Schols HA (2007) Structural differences of xylans affect their interaction with cellulose. Carbohydr Polym 69(1):94–105

    Article  CAS  Google Scholar 

  • Kohnke T, Lund K, Brelid H, Westman G (2010) Kraft pulp hornification: a closer look at the preventive effect gained by glucuronoxylan adsorption. Carbohydr Polym 81(2):226–233

    Article  Google Scholar 

  • Kohnke T, Ostlund A, Brelid H (2011) Adsorption of arabinoxylan on cellulosic surfaces: influence of degree of substitution and substitution pattern on adsorption characteristics. Biomacromolecules 12(7):2633–2641

    Article  Google Scholar 

  • Larsson PT (2004) Interaction between cellulose I and hemicelluloses studied by spectral fitting of CP/MAS 13C-NMR spectra. ACS Symp Ser 864(Hemicelluloses science and technology):254–268

    CAS  Google Scholar 

  • Larsson PT, Hult E-L, Wickholm K, Pettersson E, Iversen T (1999) CP/MAS 13C NMR spectroscopy applied to structure and interaction studies on cellulose I. Solid State Nucl Magn Reson 15(1):31–40

    Article  CAS  Google Scholar 

  • Leeflang BR, van Kuik JA, Kroon-Bratenburg LMJ (2006) Oligosaccharides and cellulose crystal surfaces: computer simulations. ACS Symp Ser 930(NMR Spectroscopy and Computer Modeling of Carbohydrates Recent Advances):133–155, 4 plates

  • Lelliot C, Atkins EDT, Juritz JWF, Stephen AM (1978) Conformation of the gummy polysaccharide from corm sacs of Watsonia pyramidata. Polymer 19(4):363–367

    Article  CAS  Google Scholar 

  • Lindberg B, Mosihuzzaman M, Nahar N, Abeysekera RM, Brown RG, Willison JHM (1990) An unusual (4-O-methyl-D-glucurono)-D-xylan isolated from the mucilage of seeds of the quince tree (Cydonia oblonga). Carbohydr Res 207(2):307–310

    Article  CAS  Google Scholar 

  • Linder AP, Bergman R, Bodin A, Gatenholm P (2003) Mechanism of assembly of xylan onto cellulose surfaces. Langmuir 19(12):5072–5077

    Article  CAS  Google Scholar 

  • Marchessault RH, Liang CY (1962) The infrared spectra of crystalline polysaccharides. VIII. Xylans. J Polym Sci 59:357–378

    Article  CAS  Google Scholar 

  • Marchessault RH, Morehead FF, Walter NM, Glaudemans CPJ, Timell TE (1961) Morphology of xylan single crystals. J Polym Sci 51(156):S66–S68

    Article  CAS  Google Scholar 

  • Marchessault RH, Settineri W, Winter W (1967) Crystallization of xylan in the presence of cellulose. Tappi 50(2):55–59

    CAS  Google Scholar 

  • Mazeau K (2005) Structural micro-heterogeneities of crystalline Iβ cellulose. Cellulose 12(4):339–349

    Article  CAS  Google Scholar 

  • Mazeau K, Moine C, Krausz P, Gloaguen V (2005) Conformational analysis of xylan chains. Carbohydr Res 340(18):2752–2760

    Article  CAS  Google Scholar 

  • Mora F, Ruel K, Comtat J, Joseleau JP (1986) Aspect of native and redeposited xylans at the surface of cellulose microfibrils. Holzforschung 40(2):85–91

    Article  CAS  Google Scholar 

  • Morris S, Hanna S, Miles MJ (2004) The self-assembly of plant cell wall components by single-molecule force spectroscopy and Monte Carlo modelling. Nanotechnology 15(9):1296–1301

    Article  CAS  Google Scholar 

  • Newman RH (1999) Estimation of the lateral dimensions of cellulose crystallites using 13C NMR signal strengths. Solid State Nucl Magn Reson 15(1):21–29

    Article  CAS  Google Scholar 

  • Newman RH, Davidson TC (2004) Molecular conformations at the cellulose-water interface. Cellulose 11(1):23–32

    Article  CAS  Google Scholar 

  • Nieduszynski I, Marchessault RH (1971) Structure of Beta-D-(1–4) xylan hydrate. Nature 232(5305):46–47

    Article  CAS  Google Scholar 

  • Nieduszynski IA, Marchessault RH (1972) Structure of beta-D(1–4′)-xylan hydrate. Biopolymers 11(7):1335–1344

    Article  CAS  Google Scholar 

  • Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55(4):241–249

    Article  CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082

    Article  CAS  Google Scholar 

  • Olsson A-M, Bjurhager I, Gerber L, Sundberg B, Salmen L (2011) Ultra-structural organisation of cell wall polymers in normal and tension wood of aspen revealed by polarisation FTIR microspectroscopy. Planta 233(6):1277–1286

    Article  CAS  Google Scholar 

  • Rappe AK, Goddard WA III (1991) Charge equilibration for molecular dynamics simulations. J Phys Chem 95(8):3358–3363

    Article  CAS  Google Scholar 

  • Rappe AK, Casewit CJ, Colwell KS, Goddard WA III, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114(25):10024–10035

    Article  CAS  Google Scholar 

  • Roelofsen PA (1954) Some notes on xylan crystals. Biochem Biophys Acta 13:592–593

    Article  CAS  Google Scholar 

  • Saake B, Kruse T, Puls J (2001) Investigation on molar mass, solubility and enzymatic fragmentation of xylans by multi-detected SEC chromatography. Bioresour Technol 80(3):195–204

    Article  CAS  Google Scholar 

  • Stevanic JS, Salmen L (2009) Orientation of the wood polymers in the cell wall of spruce wood fibers. Holzforschung 63(5):497–503

    Article  CAS  Google Scholar 

  • Teleman A, Larsson PT, Iversen T (2001) On the accessibility and structure of xylan in birch kraft pulp. Cellulose 8(3):209–215

    Article  CAS  Google Scholar 

  • Timell TE (1964) Wood Hemicelluloses. I. Adv Carbohydr Chem 19:247–302

    CAS  Google Scholar 

  • Tokoh C, Takabe K, Sugiyama J, Fujita M (2002a) Cellulose synthesized by Acetobacter xylinum in the presence of plant cell wall polysaccharides. Cellulose 9(1):65–74

    Article  CAS  Google Scholar 

  • Tokoh C, Takabe K, Sugiyama J, Fujita M (2002b) CP/MAS 13C-NMR and electron diffraction study of bacterial cellulose structure affected by cell wall polysaccharides. Cellulose 9(3/4):351–360

    Article  CAS  Google Scholar 

  • Verlet L (1967) Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys Rev 159(1):98–103

    Article  CAS  Google Scholar 

  • Vian B, Reis D, Darzens D, Roland JC (1994) Cholesteric-like crystal analogs in glucuronoxylan-rich cell wall composites: experimental approach of acellular re-assembly from native cellulosic suspension. Protoplasma 180(1–2):70–81

    Article  CAS  Google Scholar 

  • Wickholm K, Larsson PT, Iversen T (1998) Assignment of non-crystalline forms in cellulose I by CP/MAS carbon-13 NMR spectroscopy. Carbohydr Res 312(3):123–129

    Article  CAS  Google Scholar 

  • Willison JHM, Abeysekera RM (1988) A liquid crystal containing cellulose in living plant tissue. J Polym Sci C Polym Lett 26(2):71–75

    CAS  Google Scholar 

  • Winter H, Barakat A, Cathala B, Saake B (2006) Preparation of arabinoxylan and its sorption on bacterial cellulose during cultivation. Macromol Symp 232:74–84

    Article  CAS  Google Scholar 

  • Yui T, Imada K, Shibuya N, Ogawa K (1995) Conformation of an arabinoxylan isolated from the rice endosperm cell wall by X-ray diffraction and a conformational analysis. Biosci Biotechnol Biochem 59(6):965–968

    Article  CAS  Google Scholar 

  • Zhang Q, Brumer H, Agren H, Tu Y (2011) The adsorption of xyloglucan on cellulose: effects of explicit water and side chain variation. Carbohydr Res 346(16):2595–2602

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the help of Dr. H. Chanzy for valuable comments during the writing of this work. This work was partially financed by the ANR grant ANALOGS ANR-BLAN08-3_310735.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Mazeau.

Additional information

K. Mazeau and L. Charlier—Affiliated with Université Joseph Fourier Grenoble 1, and member of the Institut de Chimie Moléculaire de Grenoble.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazeau, K., Charlier, L. The molecular basis of the adsorption of xylans on cellulose surface. Cellulose 19, 337–349 (2012). https://doi.org/10.1007/s10570-011-9643-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-011-9643-7

Keywords