Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

All-cellulose composites from unbleached hardwood kraft pulp reinforced with nanofibrillated cellulose

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In the present work, nanofibrillated cellulose (NFC) from bleached eucalyptus pulp was prepared, characterized and used as reinforcement in an unbleached eucalyptus fiber matrix. First, the NFC was fabricated through TEMPO-mediated oxidation and characterized for the degree of polymerization, water retention value, cationic demand and carboxyl content. Intrinsic mechanical properties were also calculated by applying the rule of mixtures, which determines the coupling (f c) and efficiency factor (η e) of cellulose nanofibrils within the matrix. The results showed that the average intrinsic tensile strength and Young’s modulus of NFC are estimated to be 6,919 MPa and 161 GPa, respectively. After characterization, the NFC was used as reinforcement in the preparation of biocomposites in the form of paper handsheets, which were physically and mechanically analyzed. The presence of NFC induced an increase in the density of biocomposites and significant enhancement of the mechanical properties as well as an important reduction in porosity. Finally, f c and η e were determined from the mean intrinsic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Besbes I, Rei Vilar M, Boufi S (2011) Nanofibrillated cellulose from alfa, eucalyptus and pine fibers: preparation, characteristics and reinforcing potential. Carbohydr Polym 86:1198–1206

    Article  CAS  Google Scholar 

  • Carrasco F, Mutjé P, Pèlach MA (1998) Control of retention in paper-making by colloid titration and zeta potential techniques. Wood Sci Technol 32:145–155

    CAS  Google Scholar 

  • Chakraborty A, Sahin M, Kortschot M (2006) Reinforcing potential of wood pulp-derived microfibres in a PVA matrix. Holzforschung 60:53–58

    Article  CAS  Google Scholar 

  • Da Silva D, Montanari S, Vignon M (2003) TEMPO-Mediated Oxidation of Cellulose III. Biomacromolecules 4:1417–1425

    Article  Google Scholar 

  • Dang Z, Zhang J, Ragauskas AJ (2007) Characterizing TEMPO-mediated oxidation of ECF bleached softwood kraft pulps. Carbohydr Polym 70:310–317

    Article  CAS  Google Scholar 

  • Fu SY, Lauke B (1996) Effects of fiber length and fiber orientation distributions on the tensile strength of short-fiber-reinforced polymers. Compos Sci Technol 10:1255–1258

    Google Scholar 

  • Gironés J, Méndez JA, Boufi S, Vilaseca F, Mutjé P (2007) Effect of silane coupling agents on the properties of pine fibres/polypropylene composites. J Appl Polym Sci 6:3706–3717

    Article  Google Scholar 

  • González I, Vilaseca F, Alcalà M, Pèlach MA, Boufi S, Mutjé P (2013) Effect of the combination of biobeating and NFC on the physico-mechanical properties of paper. Cellulose 20:1425–1435

    Article  Google Scholar 

  • Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose Nanopaper Structures of High Toughness. Biomacromolecules 9:1579–1585

    Article  CAS  Google Scholar 

  • Henriksson M, Fogelström L, Berglund LA, Johansson M, Hult A (2011) Novel nanocomposite concept based on cross-linking of hyperbranched polymers in reactive cellulose nanopaper templates. Compos Sci Technol 71:13–17

    Article  CAS  Google Scholar 

  • Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic Modulus of Single Cellulose Microfibrils from Tunicate Measured by Atomic Force Microscopy. Biomacromolecules 9:2571–2576

    Article  Google Scholar 

  • Kalaprasad G, Joseph K, Thomas S (1997) Theoretical modeling of tensile properties of short sisal fibre-reinforced low-density polyethylene composites. J Mater Sci 32:4261–4267

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocellulose: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466

    Article  CAS  Google Scholar 

  • López JP, Méndez JA, El Mansouri NE, Mutjé P, Vilaseca F (2011) Mean intrinsic mechanical properties of stone groundwood fibers from softwood. Bioresources 6:5037–5049

    Google Scholar 

  • Lue J, Wang T, Drzal LT (2008) Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials. Compos A Appl Sci Manuf 39:738–746

    Article  Google Scholar 

  • Manninen M, Kajanto I, Happonen J, Paltakari J (2011) The effect of microfibrillated cellulose addition on drying shrinkage and dimensional stability of wood-free paper. Nordic Pulp Paper Rese 26(3):297–305

    Article  CAS  Google Scholar 

  • Marais A, Wågberg L (2012) The use of polymeric amines to enhance the mechanical properties of lignocellulosic fibrous networks. Cellulose 19:1437–1447

    Article  CAS  Google Scholar 

  • Mark RE (1967) Cell wall mechanics of tracheids. Yale University Press, New Haven

    Google Scholar 

  • Molin U, Daniel G (2004) Effects of beating on the fibre structure of kraft pulps as revealed by FE-SEM and TEM: influence of alkaline degradation. Holzforschung 58:226–232

    Article  CAS  Google Scholar 

  • Mutjé P, Pèlach MA, Vilaseca F, García JC, Jiménez L (2005) A comparative study of the effect of refining on organosolv pulp from olive trimmings and kraftv pulp from eucalyptus wood. Bioresour Technol 96:1125–1129

    Article  Google Scholar 

  • Mutjé P, Pèlach MA, García JC, Presta S, Vilaseca F, Jiménez L (2006) Comparison of cationic demand between olive wood organosolv pulp and eucaliptus kraft pulp. Process Biochem 41:1602–1607

    Article  Google Scholar 

  • Orblin E, Fardim P (2011) Interactions between cationic polyelectrolyte and pulp fines. Bioresources 6:2340–2355

    CAS  Google Scholar 

  • Pèlach MA, Pastor FJ, Puig J, Vilaseca F, Mutjé P (2003) Enzymatic deinking of old newspapers with cellulase. Process Biochem 38:1063–1067

    Article  Google Scholar 

  • Qua EH, Hornsby PR, Sharma HSS, Lyons G, McCall RD (2009) Preparation and Characterization of Poly(vinyl alcohol) Nanocomposites Made from Cellulose Nanofibers. J Appl Polym Sci 113:2238–2247

    Article  CAS  Google Scholar 

  • Rodríguez M, Rodríguez A, Bayer J, Vilaseca F, Gironés J, Mutjé P (2010) Determination of corn stalk fibers’ strength through modeling of the mechanical properties of its composites. Bioresources 5:2535–2546

    Google Scholar 

  • Rouger J, Mutjé P (1984) Correlation between the cellulose fibers beating and the fixation of a soluble cationic polymer. Br Polym J 16:83–86

    Article  CAS  Google Scholar 

  • Saito T, Kurumae R, Wohlert J, Berglund LA, Isogai A (2013) An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules 14:248–253

    Article  CAS  Google Scholar 

  • Sanadi AR, Young RA, Clemons C, Rowell RM (1994) Recycled newspaper fibers as reinforcing fillers in thermoplastic: 1. Analysis of tensile and impact properties in polypropylene. J Reinf Plast Compos 13:54–67

    Article  CAS  Google Scholar 

  • Sehaqui H, Allais M, Zhou Q, Berglund L (2011) Wood cellulose biocomposites with fibrous structures at micro- and nanoscale. Compos Sci Technol 71:382–387

    Article  CAS  Google Scholar 

  • Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18:1097–1111

    Article  CAS  Google Scholar 

  • Vilaseca F, López A, Llauró X, Pèlach MA, Mutjé P (2004) Hemp strands as reinforcement of polystyrene composites. Chem Eng Res Design 82:1425–1431

    Article  CAS  Google Scholar 

  • Vilaseca F, Valadez-González A, Herrera-Franco PJ, Pèlach MA, López JP, Mutjé P (2010) Biocomposites from abaca strands and polypropylene. Part I: evaluation of the tensile properties. Bioresour Technol 1:387–395

    Article  Google Scholar 

  • Wainwright SA, Biggs WD, Currey JD, Gosline JM (1982) Mechanical design in organisms. Princeton University Press, Princeton

    Google Scholar 

  • Yano H, Nakahara S (2004) Bio-composites produced from plant microfiber bundles with nanometer unit web-like network. J Mater Sci 39:1635–1638

    Article  CAS  Google Scholar 

  • Young RJ, Lovell PA (1981) Introduction to Polymers, 2nd edn. CRC Press, Boca Raton, pp 319–321

    Book  Google Scholar 

  • Zimmerman T, Pöhler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6:754–761

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Spanish Ministry of Science and Innovation for the financial support given by the projects CTQ2010-21660-C03-03 and CTM2011-28506-C02-01 to develop this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. González.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alcalá, M., González, I., Boufi, S. et al. All-cellulose composites from unbleached hardwood kraft pulp reinforced with nanofibrillated cellulose. Cellulose 20, 2909–2921 (2013). https://doi.org/10.1007/s10570-013-0085-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-0085-2

Keywords