Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On the stability of a class of non-monotonic systems of parallel queues

  • Published:
Discrete Event Dynamic Systems Aims and scope Submit manuscript

Abstract

We investigate, under general stationary e‘rgodic assumptions, the stability of systems of S parallel queues in which any incoming customer joins the queue of the server having the p + 1-th shortest workload (p < S), or a free server if any. This change in the allocation policy makes the analysis much more challenging with respect to the classical FCFS model with S servers, as it leads to the non-monotonicity of the underlying stochastic recursion. We provide sufficient conditions for the existence of a stationary workload, which indicate a “splitting” of the system in heavy traffic, into a loss system of p servers (that is, a system with p servers and no waiting room), plus a FCFS system of Sp servers. To prove this result, we show en route an original sufficient condition for the existence and uniqueness of a stationary workload for a multiple-server loss system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baccelli F, Brémaud P (2002) Elements of Queueing Theory, 2nd ed. Springer

  • Borovkov AA (1984) Asymptotic Methods in Queueing Theory. J. Wiley, New york

    MATH  Google Scholar 

  • Borovkov AA, Foss S (1992) Stochastic Recursive Sequences and their Generalizations. Siberian Adv Math 2(1):16–81

    MathSciNet  Google Scholar 

  • Brandt A (1985a) On stationary waiting times and limiting behavior of queues with many servers I: The general G/G/m/ case. Elektron Inform U Kybernet 21:47–64

    MATH  Google Scholar 

  • Brandt A (1985b) On stationary waiting times and limiting behaviour of queues with many servers II. The G/GI/m/8 case. Elektron Inform Kybernet 21:151–162

    MathSciNet  MATH  Google Scholar 

  • Brandt A, Franken P, Lisek B (1990) Stationary Stochastic Models. Akademie-Verlag/Wiley

  • Chang CS (1985) A new ordering for stochastic majorization: Theory and applications. Adv Appl Probab 24:604–634

    Article  MathSciNet  MATH  Google Scholar 

  • Decreusefond L, Moyal P (2012) Stochastic Modeling and Analysis of Telecom Networks. ISTE Wiley

  • Flipo D (1983) Steady State of Loss Systems. Comptes rendus de l’Acadmie des Sciences de Paris. Ser I 297(6)

  • Flipo D (1989) Charge stationnaire d’une file d’attente à rejet. Cas de plusieurs serveurs. Annales scientifiques de l’universit de Clermont-Ferrand 2, vol 93

  • Foss S (1981) Comparison of service disciplines in multichannel service systems. Siberian Math Zh 22(1):190–197

    MATH  Google Scholar 

  • Foss S (1989) Comparison of Service Disciplines in G/GI/m Queues. INRIA Research Report:1097

  • Foss S, Chernova N (2001) On optimality of the FCFS discipline in multiserver queueing systems and networks. Siberian Math Zh 42(2):372–385

    Article  MathSciNet  MATH  Google Scholar 

  • Kiefer J, Wolfowitz J On the theory of queues with many servers. Trans Amer Math Soc 78:1–18

  • Koole G (1991) On the Optimality of FCFS for networks of multi-server queues. Technical Report BS-R9235, CWI Amsterdam

  • Koole G (1996) On the pathwise optimal Bernoulli routing policy for homogeneous parallel servers. Math Oper Research 21:469–476

    Article  MathSciNet  MATH  Google Scholar 

  • Koole G (2005) Routing to parallel homogeneous queues. Presented at the Lorentz Center workshop in honor of Arie Hordijk

  • Koole G, Sparaggis PD, Towsley D (1999) Minimizing response times and queue lengths in systems of parallel queues. J Appl Prob 36:1185–1193

    Article  MathSciNet  MATH  Google Scholar 

  • Liu Z, Towsley D (1994) Optimality of the round-robin routing policy. J Appl Prob 31:466–475

    Article  MathSciNet  MATH  Google Scholar 

  • Lisek B (1982) A method for Solving a Class of Recursive Stochastic Equation. Zeitschrift fr Wahrsch 60:151–162

    Article  MathSciNet  MATH  Google Scholar 

  • Loynes RM (1962) The stability of queues with non-independent interarrivals and service times. Proc Camb Philol Soc 58:497–520

    Article  MathSciNet  MATH  Google Scholar 

  • Mitzenmacher M (2001) The power of two choices in randomized load balancing. IEEE Trans Parall Distrib Syst 12(10):1094–1104

    Article  Google Scholar 

  • Moyal P (2010) The queue with impatience: construction of the stationary workload under FIFO. J Appl Probab 47(4):498–512

    Article  MathSciNet  MATH  Google Scholar 

  • Moyal P A pathwise comparison of parallel queues. arXiv:1301.6364

  • Moyal P (2015) A generalized backwards scheme for solving non monotonic stochastic recursions. Annals Appl Probab 25(2):582–599

    Article  MathSciNet  MATH  Google Scholar 

  • Neveu J (1983) Construction de files d’attente stationnaires (in French). Lecture Notes in Control and Information Sciences, vol 60. Springer-Verlag, pp 31–41

  • Reiman M (1983) Some diffusion approximations with state-space collapse. Lecture Notes in Control and Information Sciences, vol 60. Srpinger-Verlag, pp 207–240

  • Scheller-Wolf A (2003) Necessary and sufficient conditions for delay moments in FIFO multiserver queues with and application comparing s slow servers with one fast one. Oper Res 51(5):748–758

    Article  MathSciNet  MATH  Google Scholar 

  • Whitt W (1986) Deciding which queue to join: Some counterexamples. Oper Res 34(1):55–62

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Moyal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moyal, P. On the stability of a class of non-monotonic systems of parallel queues. Discrete Event Dyn Syst 27, 85–107 (2017). https://doi.org/10.1007/s10626-016-0230-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10626-016-0230-9

Keywords