Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Planktonic community structure during a harmful bloom of Phaeocystis globosa in a subtropical bay, with special reference to the ciliate assemblages

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Planktonic community structure was investigated during outbreak of harmful Phaeocystis globosa bloom in a subtropical bay, the Maowei Sea, South China Sea. The phytoplankton assemblage was numerically dominated by colonial P. globosa, with its abundance ranging from 1.23 × 108 to 11.12 × 108 cells m−3 and contributing nearly 90 % to the total abundance. Totally 66 mesozooplankton (>169 µm) and 19 ciliates species were recorded, with the densities ranged from 169 to 1633 ind m−3 and 74 to 1118 cells L−1, respectively. The dominant species for mesozooplankton were Copepoda (larvae), Bestiola sinicus, B. amoyensis, Macrura (larvae) and Acartia spinicauda, respectively. The ciliate assemblage was numerically dominated by Codonella rapa, Strombidium globosaneum and Mesodinium rubrum. During the bloom, P. globosa seemed to be negatively affected by the nutrient phosphate significantly (p < 0.05). However, no correlation between P. globosa and ciliate assemblage was detected, but P. globosa was negatively correlated with total biomass of mesozooplankton and abundance of B. sinicus (p < 0.05), suggesting that P. globosa was uncoupled from the grazing by both ciliates and mesozooplankton when appearing as colonies form. On the other hand, both positive and negative correlations among the dominant groups of mesozooplankton and ciliates were observed (p < 0.05) which possibly indicated that the predation of mesozooplankton upon ciliates might be strengthened during the Phaeocystis bloom and the complex effect also varied from species to species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Carey PG (1992) Marine interstitial ciliates. Chapman and Hall, London, pp 14–324

    Google Scholar 

  • Chen MR, Chen BZ, Harrison P, Liu HB (2011) Dynamics of mesozooplankton assemblages in subtropical coastal waters of Hong Kong: a comparative study between an eutrophic estuarine and a mesotrophic coastal site. Cont Shelf Res 31:1075–1086

    Article  Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER v6. User Manual/Tutorial. PRIMER-E, Plymouth

  • Clarke AL, Weckstrom K, Conley DJ, Anderson NJ, Adser F, deJonge VN, Ellegaard M, Juggins S, Korhola A, Reuss N, Telford RJ, Vaalgamaa S (2006) Long-term trends in eutrophication and nutrients in the coastal zone. Limnol Oceanogr 51:385–397

    Article  CAS  Google Scholar 

  • Cohen RA, Fong P (2004) Responses of bloom-forming green macroalga to short-term change in salinity, nutrients, and light help explain its ecological success. Estuaries 27:209–216

    Article  Google Scholar 

  • Davies AG, de Madariaga I, Bautista B, Fernandez E, Harbour DS, Serret P, Tranter PRG (1992) The ecology of a coastal Phaeocystis bloom in the northwestern English Channel in 1990. J Mar Biol Assoc UK 72:691–708

    Article  Google Scholar 

  • Dickerson KD, Medley KA, Havel JE (2010) Spatial variation in zooplankton community structure is related to hydrologic flow units in the Missouri River, USA. River Res Appl 26:605–618

    Google Scholar 

  • Giberto DA, Bremec CS, Cortelezzi A, Rodrigues A, Capitulo A, Brazeiro A (2007) Ecological boundaries in estuaries: macrobenthic β-diversity in the Río de la Plata system (34–36°S). J Mar Biol Assoc UK 87:5012–5016

    Article  Google Scholar 

  • Grattepanche JD, Vincent D, Breton E, Christaki U (2011) Microzooplankton herbivory during the diatom–Phaeocystis spring succession in the eastern English Channel. J Exp Mar Biol Ecol 404:87–97

    Article  Google Scholar 

  • Hamm CE (2000) Architecture, ecology and biogeochemistry of Phaeocystis colonies. J Sea Res 43:307–315

    Article  CAS  Google Scholar 

  • Hamm CE, Rousseau V (2003) Composition, assimilation and degradation of Phaeocystis globosa-derived fatty acids in the North Sea. J Sea Res 50:271–283

    Article  CAS  Google Scholar 

  • Hamm CE, Simson DA, Merkel R, Smetacek V (1999) Colonies of Phaeocystis globosa are protected by a thin but tough skin. Mar Ecol Prog Ser 187:101–111

    Article  Google Scholar 

  • Hensen FC, Reckermann M, Klein Breteler WCM, Riegman R (1993) Phaeocystis blooming enhanced by copepod predation on protozoa: evidence from incubation experiments. Mar Ecol Prog Ser 102:51–57

    Article  Google Scholar 

  • Hensen PJ, Bjørnsen PK, Hansen BW (1997) Zooplankton grazing and growth: scaling within the 2–2,000 μm body size range. Limnol Oceanogr 42:687–704

    Article  Google Scholar 

  • Huang CJ, Dong QX, Zheng L (1999) Taxonomic and ecological studies on a large scale Phaeocystis pouchetii bloom in the southeast cast of China during late 1997. Oceanologia et Limnologia Sinica 30:581–589 (In Chinese with English abstract)

    Google Scholar 

  • Huang TW, Wang XD, Wang Y (2012) Growth, architecture and cell distribution in Phaeocystis globosa colonies. Chin Bull Bot 47(5):508–514

    CAS  Google Scholar 

  • Jakobsen HH, Tang KW (2002) Effects of protozoan grazing on colony formation in Phaeocystis globosa (Prymnesiophyceae) and the potential costs and benefits. Aquat Microb Ecol 27:261–273

    Article  Google Scholar 

  • Johnson MD, Stoecker DK, Marshall HG (2013) Seasonal dynamics of Mesodinium rubrum in Chesapeake Bay. J Plankton Res 35(4):877–893

    Article  Google Scholar 

  • Kchaou N, Elloumi J, Drira Z, Hamza A, Ayadi H, Bouain A, Aleya L (2009) Distribution of ciliates in relation to environmental factors along the coastline of the Gulf of Gabes, Tunisia. Estuar Coast Shelf Sci 83:414–424

    Article  CAS  Google Scholar 

  • Kirkwood DS, Aminot A, Carlberg SR (1996) The 1994 quasimeme laboratory performances study: nutrients in seawater and standard solutions. Mar Pollut Bull 32:640–645

    Article  CAS  Google Scholar 

  • Kofoid CA, Campbell AS (1929) A conspectus of the marine and freshwater Ciliata belonging to the Suborder Tintinoinea, with descriptions of new species principally from the Agassiz Expedition to the Eastern Tropical Pacific 1904–1905. University of California Press, Los Angeles, pp 1–403

    Google Scholar 

  • Kofoid CA, Campbell AS (1939) The Ciliata: the Tintinnoinea. Museum of Comparative Zoology, Boston, pp 1–473

    Google Scholar 

  • Lan WL (2012) Study on reasons and prevention measures of eutrophication during 2006–2010 in Maowei Sea. Environ Sci Manag 37(8):39–44 (In Chinese with English abstract)

    CAS  Google Scholar 

  • Li KZ, Yin JQ, Huang LM, Tan YH (2006) Spatial and temporal variations of mesozooplankton in the Pearl River estuary, China. Estuar Coast Shelf S 67:543–552

    Article  Google Scholar 

  • Li YN, Shen PP, Huang LM, Qi YZ (2012) Taxonomy and phylogenetics of the genus Phaeocystis: research progress. Chin J Ecol 31(3):745–754 (In Chinese with English abstract)

    CAS  Google Scholar 

  • Liu JS, Marion VR, Yang WD, Peng XC, Lu SH, Wang Y, Chen JF, Wang ZH, Qi YZ (2010) Negative effects of Phaeocystis globosa on microalgae. Chin J Oceanol Limnol 28:911–916 (In Chinese with English abstract)

    Article  Google Scholar 

  • Lynn DH, Roff JC, Hopcroft RR (1991) Annual abundance and biomass of aloricate ciliates in tropical neritic waters off Kingston. Jam Mar Biol 110:437–448

    Article  Google Scholar 

  • Maeda M, Carey PG (1985) An illustrated guide to the species of the family Strombidiidae (Oligotrichida, Ciliophora), free swimming protozoa common in the marine environment. Bull Ocean Res Inst Univ Tokyo 19:1–68

    Google Scholar 

  • Muylaert K, Sabbe K, Vyverman W (2000) Spatial and temporal dynamics of phytoplankton communities in a freshwater tidal estuary (Schelde, Belgium). Estuar Coast Shelf Sci 50:673–687

    Article  Google Scholar 

  • Nejstgaard JC, Tang KW, Steinke M, Dutz J, Koski M, Antajan E, Long JD (2007) Zooplankton grazing on Phaeocystis: a quantitative review and future challenges. Biogeochemistry 83:147–172

    Article  Google Scholar 

  • Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analyses. Pergamon Press, Oxford, p 173

    Google Scholar 

  • Peng XC, Yang WD, Liu JS, Peng ZY, Lv SH, Ding WZ (2005) Characterization of the hemolytic properties of an extract from Phaeocystis globosa Scherffel. J Integr Plant Biol 47:165–171

    Article  Google Scholar 

  • Peperzak L, Duin RNM, Colijn F, Gieskes WWC (2000) Growth and mortality of flagellates and non-flagellate cells of Phaeocystis globosa (Prymnesiophyceae). J Plankton Res 22(1):107–120

    Article  Google Scholar 

  • Pierce RW, Turner JT (1992) Ecology of planktonic ciliates in marine food webs. Rev Aquat Sci 6:139–181

    Google Scholar 

  • Riegman R, van Boekel W (1996) The ecophysiology of Phaeocystis globosa: a review. J Sea Res 35:235–242

    Article  Google Scholar 

  • Schoemann V, Becquevort S, Stefels J, Rousseau V, Lancelot C (2005) Phaeocystis blooms in the global ocean and their controlling mechanisms: a review. J Sea Res 53:43–66

    Article  CAS  Google Scholar 

  • Shen PP, Qi YZ, Wang Y, Huang LM (2011a) Phaeocystis globosa Scherffel, a harmful microalga, and its production of dimethylsulfoniopropionate. Chin J Oceanol Limnol 29(4):869–873

    Article  CAS  Google Scholar 

  • Shen PP, Li G, Huang LM, Zhang JL, Tan YH (2011b) Spatio-temporal variability of phytoplankton assemblages in the Pearl River estuary, with special reference to the influence of turbidity and temperature. Cont Shelf Res 31:1672–1681

    Article  Google Scholar 

  • Shen PP, Li YN, Qi YZ, Zhang LP, Tan YH, Huang LM (2012) Morphology and bloom dynamics of Cochlodinium geminatum (Schütt) Schütt in the Pearl River Estuary, South China Sea. Harmful Algae 13:10–19

    Article  Google Scholar 

  • Steen H (2004) Interspecific competition between Enteromorpha (Ulvales: Chlorophyceae) and Fucus (Fucales: Phaeophyceae) germlings: effects of nutrient concentration, temperature, and settlement density. Mar Ecol Prog Ser 278:89–101

    Article  Google Scholar 

  • Tang KW, Jakobsen HH, Visser AW (2001) Phaeocystis globosa (Prymnesiophyceae) and the planktonic food web: feeding, growth, and trophic interactions among grazers. Limnol Oceanogr 46:1860–1870

    Article  Google Scholar 

  • Teixeira IG, Crespo BG, Nielsen TG (2012) Role of microzooplankton during a Phaeocystis sp. bloom in the Oosterschelde (SW Netherlands). J Mar Syst 94:97–106

    Article  Google Scholar 

  • Utermöhl H (1958) Zurvervolkommungder quantitativen phytoplankton Methodik. Mitteilungen der Internationale Vereinigung fur Theoretische und Angewandte. Limnologie 9:1–38

    Google Scholar 

  • Verity PG, Smayda TJ (1989) Nutritional value of Phaeocystis pouchetii (Prymnesiophyceae) and other phytoplankton for Acartia spp. (Copepoda): ingestion, egg production, and growth of nauplii. Mar Biol 100:161–171

    Article  Google Scholar 

  • Verity PG, Smetacek V (1996) Organism life cycles, predation, and the structure of marine pelaic ecosystems. Mar Ecol Prog Ser 130:277–293

    Article  Google Scholar 

  • Widdicombe CES, Archer SD, Burkill PH, Stefels J (2004) Microzooplankton grazing in Phaeocystis and diatom-dominated waters in the southern North Sea in spring. J Sea Res 51:37–51

    Article  Google Scholar 

  • Worm B, Lotze HK (2006) Effects of eutrophication, grazing, and algal blooms on rocky shores. Limnol Oceanogr 51:569–579

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Gang Li for his help in revision of the manuscript. This research was supported by the financial fund of the ministry of agriculture (NFZX2013), National Basic Research Program of China (973 Program, 2015CB452903), Special Fund for Agro-scientific Research in the Public Interest (201403008), Guangdong Natural Science Foundation (S2013040016424, 1015030101000002), Shantou Science and Technology Project (No. 99) and Open Project of the Key Laboratory of Marine Bio-resources and Ecology (LMB131004).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping-Ping Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, HX., Huang, HH., Xu, SN. et al. Planktonic community structure during a harmful bloom of Phaeocystis globosa in a subtropical bay, with special reference to the ciliate assemblages. Ecotoxicology 24, 1419–1429 (2015). https://doi.org/10.1007/s10646-015-1464-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-015-1464-2

Keywords