Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Mock HUBS observations of hot gas with IllustrisTNG

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

The lack of adequate X-ray observing capability is seriously impeding the progress in understanding the hot phase of circumgalactic medium (CGM), which is predicted to extend to the virial radius of a galaxy or beyond, and thus in acquiring key boundary conditions for studying galaxy evolution. To this end, the Hot Universe Baryon Surveyor (HUBS) is proposed. HUBS is designed to probe hot CGM by detecting its emission or absorption lines with a non-dispersive X-ray spectrometer of high resolution and high throughput. The spectrometer consists of a 60 × 60 array of microcalorimeters, with each detector providing an energy resolution of 2 eV, and is placed in the focal plane of an X-ray telescope of 1 field-of-view. With such a design, the spectrometer is highly optimized for detecting X-ray-emitting hot gas in the CGM of local galaxies, as well as in intra-group medium (IGrM), intra-cluster medium (ICM), or intergalactic medium (IGM). To assess the scientific potential of HUBS, in this work, we created mock observations of galaxies, groups, and clusters at different redshifts with the IllustrisTNG simulation. Focusing exclusively on emission studies, we took into account the effects of light cone, Galactic foreground emission, and background AGN contribution in the mock observations. From the observations, we made mock X-ray images and spectra, analyzed them to derive the properties of the emitting gas in each case, and compared the results with the input parameters from the simulation. The results show that HUBS is well suited for studying hot CGM at low redshifts. The redshift range is significantly extended for measuring IGrM and ICM. The sensitivity limits are also presented for detecting extended emission of low surface brightness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The IllustrisTNG halo catalogues and the simulation snapshots [47] are publicly available at http://www.tng-project.org/data/. The rest of the data underlying the article will be available from the corresponding author on reasonable request.

Notes

  1. https://www.kitp.ucsb.edu/activities/halo21

  2. http://hubs.phys.tsinghua.edu.cn/en/index.html

  3. http://www.tng-project.org/data/

  4. https://hea-www.cfa.harvard.edu/soxs/index.html

  5. https://hea-www.cfa.harvard.edu/soxs/users_guide/background.html

  6. http://hea-www.cfa.harvard.edu/∼jzuhone/pyxsim/

  7. https://photutils.readthedocs.io/en/stable/

  8. http://www.astropy.org

References

  1. Tumlinson, J., Peeples, M.S., Werk, J.K.: The circumgalactic medium. ARA&A 55(1), 389–432 (2017). https://doi.org/10.1146/annurev-astro-091916-055240. arXiv:https://arxiv.org/abs/1709.09180 [astro-ph.GA]

    Article  ADS  Google Scholar 

  2. Wang, Q.D., Immler, S., Walterbos, R., Lauroesch, J.T., Breitschwerdt, D.: Chandra detection of a hot gaseous corona around the edge-on galaxy NGC 4631. ApJ 555(2), 99–102 (2001). https://doi.org/10.1086/323179. arXiv:https://arxiv.org/abs/astro-ph/0105541 [astro-ph]

    Article  ADS  Google Scholar 

  3. Strickland, D.K., Heckman, T.M., Colbert, E.J.M., Hoopes, C.G., Weaver, K.A.: A high spatial resolution X-ray and Hα study of hot gas in the halos of star-forming disk galaxies. I. Spatial and spectral properties of the diffuse X-ray emission. ApJS 151 (2), 193–236 (2004). https://doi.org/10.1086/382214. arXiv:https://arxiv.org/abs/astro-ph/0306592 [astro-ph]

    Article  ADS  Google Scholar 

  4. Tüllmann, R., Pietsch, W., Rossa, J., Breitschwerdt, D., Dettmar, R.-J.: The multi-phase gaseous halos of star forming late-type galaxies. I. XMM-Newton observations of the hot ionized medium. A&A 448(1), 43–75 (2006). https://doi.org/10.1051/0004-6361:20052936. arXiv:https://arxiv.org/abs/astro-ph/0510079 [astro-ph]

    Article  ADS  Google Scholar 

  5. Li, J.-T., Wang, Q.D.: Chandra survey of nearby highly inclined disc galaxies - II. Correlation analysis of galactic coronal properties. MNRAS 435 (4), 3071–3084 (2013). https://doi.org/10.1093/mnras/stt1501. arXiv:https://arxiv.org/abs/1308.1933 [astro-ph.CO]

    Article  ADS  Google Scholar 

  6. Li, J.-T., Bregman, J.N., Wang, Q.D., Crain, R.A., Anderson, M.E., Zhang, S.: The circum-galactic medium of massive spirals. II. probing the nature of hot gaseous halo around the most massive isolated spiral galaxies. ApJS 233(2), 20 (2017). https://doi.org/10.3847/1538-4365/aa96fc. arXiv:https://arxiv.org/abs/1710.07355 [astro-ph.GA]

    Article  ADS  Google Scholar 

  7. Anderson, M.E., Bregman, J.N.: Detection of a hot gaseous halo around the giant spiral galaxy NGC 1961. ApJ 737(1), 22 (2011). https://doi.org/10.1088/0004-637X/737/1/22. arXiv:https://arxiv.org/abs/1105.4614 [astro-ph.CO]

    Article  ADS  Google Scholar 

  8. Dai, X., Anderson, M.E., Bregman, J.N., Miller, J.M.: XMM-Newton detects a hot gaseous halo in the fastest rotating spiral galaxy UGC 12591. ApJ 755(2), 107 (2012). https://doi.org/10.1088/0004-637X/755/2/107. arXiv:https://arxiv.org/abs/1112.0324 [astro-ph.CO]

    Article  ADS  Google Scholar 

  9. Bogdán, Á., Bourdin, H., Forman, W.R., Kraft, R.P., Vogelsberger, M., Hernquist, L., Springel, V.: Probing the hot X-ray corona around the massive spiral galaxy, NGC 6753, using deep XMM-Newton observations. ApJ 850(1), 98 (2017). https://doi.org/10.3847/1538-4357/aa9523. arXiv:https://arxiv.org/abs/1710.07286 [astro-ph.GA]

    Article  ADS  Google Scholar 

  10. Cui, W., Chen, L.-B., Gao, B., Guo, F.-L., Jin, H., Wang, G.-L., Wang, L., Wang, J.-J., Wang, W., Wang, Z.-S., Wang, Z., Yuan, F., Zhang, W.: HUBS: hot universe baryon surveyor. J. Low Temp. Phys. 199(1-2), 502–509 (2020). https://doi.org/10.1007/s10909-019-02279-3

    Article  ADS  Google Scholar 

  11. Cui, W., Bregman, J.N., Bruijn, M.P., Chen, L.-B., Chen, Y., Cui, C., Fang, T.-T., Gao, B., Gao, H., Gao, J.-R., Gottardi, L., Gu, K.-X., Guo, F.-L., Guo, J., He, C.-L., He, P.-F., den Herder, J.-W., Huang, Q.-S., Li, F.-J., Li, J.-T., Li, J.-J., Li, L.-Y., Li, T.-P., Li, W.-B., Liang, J.-T., Liang, Y.-J., Liang, G.-Y., Liu, Y.-J., Liu, Z., Liu, Z.-Y., Jaeckel, F., Ji, L., Ji, W., Jin, H., Kang, X., Ma, Y.-X., McCammon, D., Mo, H.-J., Nagayoshi, K., Nelms, K., Qi, R., Quan, J., Ridder, M.L., Shen, Z.-X., Simionescu, A., Taralli, E., Wang, Q.D., Wang, G.-L., Wang, J.-J., Wang, K., Wang, L., Wang, S.-F., Wang, S.-J., Wang, T.-G., Wang, W., Wang, X.-Q., Wang, Y.-L., Wang, Y.-R., Wang, Z., Wang, Z.-S., Wen, N.-Y., de Wit, M., Wu, S.-F., Xu, D., Xu, D.-D., Xu, H.-G., Xu, X.-J., Xu, R.-X., Xue, Y.-Q., Yi, S.-Z., Yu, J., Yang, L.-W., Yuan, F., Zhang, S., Zhang, W., Zhang, Z., Zhong, Q., Zhou, Y., Zhu, W.-X.: HUBS: a dedicated hot circumgalactic medium explorer. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 11444, p. 114442. https://doi.org/10.1117/12.2560871 (2020)

  12. McCammon, D., Almy, R., Apodaca, E., Bergmann Tiest, W., Cui, W., Deiker, S., Galeazzi, M., Juda, M., Lesser, A., Mihara, T., Morgenthaler, J.P., Sanders, W.T., Zhang, J., Figueroa-Feliciano, E., Kelley, R.L., Moseley, S.H., Mushotzky, R.F., Porter, F.S., Stahle, C.K., Szymkowiak, A.E.: A high spectral resolution observation of the soft X-ray diffuse background with thermal detectors. ApJ 576(1), 188–203 (2002). https://doi.org/10.1086/341727. arXiv:https://arxiv.org/abs/astro-ph/0205012 [astro-ph]

    Article  ADS  Google Scholar 

  13. Yoshikawa, K., Yamasaki, N.Y., Suto, Y., Ohashi, T., Mitsuda, K., Tawara, Y., Furuzawa, A.: Detectability of the warm/hot intergalactic medium through emission lines of O VII and O VIII. PASJ 55, 879–890 (2003). https://doi.org/10.1093/pasj/55.5.879. arXiv:https://arxiv.org/abs/astro-ph/0303281

    Article  ADS  Google Scholar 

  14. Fang, T., Croft, R.A.C., Sanders, W.T., Houck, J., Davé, R., Katz, N., Weinberg, D.H., Hernquist, L.: Simulation of soft X-ray emission lines from the missing baryons. ApJ 623, 612–626 (2005). https://doi.org/10.1086/428656. arXiv:https://arxiv.org/abs/astro-ph/0311141

    Article  ADS  Google Scholar 

  15. Roncarelli, M., Cappelluti, N., Borgani, S., Branchini, E., Moscardini, L.: The effect of feedback on the emission properties of the warm-hot intergalactic medium. MNRAS 424(2), 1012–1025 (2012). https://doi.org/10.1111/j.1365-2966.2012.21277.x. arXiv:https://arxiv.org/abs/1202.4275 [astro-ph.CO]

    Article  ADS  Google Scholar 

  16. Oppenheimer, B.D., Bogdán, Á., Crain, R.A., ZuHone, J.A., Forman, W.R., Schaye, J., Wijers, N.A., Davies, J.J., Jones, C., Kraft, R.P., Ghirardini, V.: EAGLE and Illustris-TNG predictions for resolved eROSITA X-ray observations of the circumgalactic medium around normal galaxies. ApJ 893(1), 24 (2020). https://doi.org/10.3847/2041-8213/ab846f. arXiv:https://arxiv.org/abs/2003.13889 [astro-ph.GA]

    Article  Google Scholar 

  17. Marinacci, F., Vogelsberger, M., Pakmor, R., Torrey, P., Springel, V., Hernquist, L., Nelson, D., Weinberger, R., Pillepich, A., Naiman, J., Genel, S.: First results from the IllustrisTNG simulations: radio haloes and magnetic fields. MNRAS 480, 5113–5139 (2018). https://doi.org/10.1093/mnras/sty2206. arXiv:https://arxiv.org/abs/1707.03396

    ADS  Google Scholar 

  18. Naiman, J.P., Pillepich, A., Springel, V., Ramirez-Ruiz, E., Torrey, P., Vogelsberger, M., Pakmor, R., Nelson, D., Marinacci, F., Hernquist, L., Weinberger, R., Genel, S.: First results from the IllustrisTNG simulations: a tale of two elements - chemical evolution of magnesium and europium. MNRAS 477, 1206–1224 (2018). arXiv:https://arxiv.org/abs/1707.03401. https://doi.org/10.1093/mnras/sty618

    Article  ADS  Google Scholar 

  19. Nelson, D., Pillepich, A., Springel, V., Weinberger, R., Hernquist, L., Pakmor, R., Genel, S., Torrey, P., Vogelsberger, M., Kauffmann, G., Marinacci, F., Naiman, J.: First results from the IllustrisTNG simulations: the galaxy colour bimodality. MNRAS 475, 624–647 (2018). https://doi.org/10.1093/mnras/stx3040. arXiv:https://arxiv.org/abs/1707.03395

    Article  ADS  Google Scholar 

  20. Nelson, D., Springel, V., Pillepich, A., Rodriguez-Gomez, V., Torrey, P., Genel, S., Vogelsberger, M., Pakmor, R., Marinacci, F., Weinberger, R., Kelley, L., Lovell, M., Diemer, B., Hernquist, L.: The IllustrisTNG simulations: public data release. Comput. Astrophys. Cosmol. 6, 2 (2019). https://doi.org/10.1186/s40668-019-0028-x. arXiv:https://arxiv.org/abs/1812.05609

    Article  ADS  Google Scholar 

  21. Pillepich, A., Nelson, D., Hernquist, L., Springel, V., Pakmor, R., Torrey, P., Weinberger, R., Genel, S., Naiman, J.P., Marinacci, F., Vogelsberger, M.: First results from the IllustrisTNG simulations: the stellar mass content of groups and clusters of galaxies. MNRAS 475(1), 648–675 (2018). https://doi.org/10.1093/mnras/stx3112. arXiv:https://arxiv.org/abs/1707.03406 [astro-ph.GA]

    Article  ADS  Google Scholar 

  22. Springel, V., Pakmor, R., Pillepich, A., Weinberger, R., Nelson, D., Hernquist, L., Vogelsberger, M., Genel, S., Torrey, P., Marinacci, F., Naiman, J.: First results from the IllustrisTNG simulations: matter and galaxy clustering. MNRAS 475, 676–698 (2018). https://doi.org/10.1093/mnras/stx3304. arXiv:https://arxiv.org/abs/1707.03397

    Article  ADS  Google Scholar 

  23. Springel, V.: E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh. MNRAS 401, 791–851 (2010). https://doi.org/10.1111/j.1365-2966.2009.15715.x. arXiv:https://arxiv.org/abs/0901.4107

    Article  ADS  Google Scholar 

  24. Springel, V., White, S.D.M., Tormen, G., Kauffmann, G.: Populating a cluster of galaxies - I. Results at [formmu2]z = 0. MNRAS 328, 726–750 (2001). https://doi.org/10.1046/j.1365-8711.2001.04912.x. arXiv:https://arxiv.org/abs/astro-ph/0012055

    Article  ADS  Google Scholar 

  25. Dolag, K., Borgani, S., Murante, G., Springel, V.: Substructures in hydrodynamical cluster simulations. MNRAS 399, 497–514 (2009). https://doi.org/10.1111/j.1365-2966.2009.15034.x. arXiv:https://arxiv.org/abs/0808.3401

    Article  ADS  Google Scholar 

  26. Planck Collaboration, Ade, P.A.R., Aghanim, N., Arnaud, M., Ashdown, M., Aumont, J., Baccigalupi, C., Banday, A.J., Barreiro, R.B., Bartlett, J.G., Bartolo, N., Battaner, E., Battye, R., Benabed, K., Benoît, A., Benoit-Lévy, A., Bernard, J.-P., Bersanelli, M., Bielewicz, P., Bock, J.J., Bonaldi, A., Bonavera, L., Bond, J.R., Borrill, J., Bouchet, F.R., Boulanger, F., Bucher, M., Burigana, C., Butler, R.C., Calabrese, E., Cardoso, J.-F., Catalano, A., Challinor, A., Chamballu, A., Chary, R.-R., Chiang, H.C., Chluba, J., Christensen, P.R., Church, S., Clements, D.L., Colombi, S., Colombo, L.P.L., Combet, C., Coulais, A., Crill, B.P., Curto, A., Cuttaia, F., Danese, L., Davies, R.D., Davis, R.J., de Bernardis, P., de Rosa, A., de Zotti, G., Delabrouille, J., Désert, F.-X., Di Valentino, E., Dickinson, C., Diego, J.M., Dolag, K., Dole, H., Donzelli, S., Doré, O., Douspis, M., Ducout, A., Dunkley, J., Dupac, X., Efstathiou, G., Elsner, F., Enßlin, T.A., Eriksen, H.K., Farhang, M., Fergusson, J., Finelli, F., Forni, O., Frailis, M., Fraisse, A.A., Franceschi, E., Frejsel, A., Galeotta, S., Galli, S., Ganga, K., Gauthier, C., Gerbino, M., Ghosh, T., Giard, M., Giraud-Héraud, Y., Giusarma, E., Gjerløw, E., González-Nuevo, J., Górski, K.M., Gratton, S., Gregorio, A., Gruppuso, A., Gudmundsson, J.E., Hamann, J., Hansen, F.K., Hanson, D., Harrison, D.L., Helou, G., Henrot-Versillé, S., Hernández-Monteagudo, C., Herranz, D., Hildebrand t, S.R., Hivon, E., Hobson, M., Holmes, W.A., Hornstrup, A., Hovest, W., Huang, Z., Huffenberger, K.M., Hurier, G., Jaffe, A.H., Jaffe, T.R., Jones, W.C., Juvela, M., Keihänen, E., Keskitalo, R., Kisner, T.S., Kneissl, R., Knoche, J., Knox, L., Kunz, M., Kurki-Suonio, H., Lagache, G., Lähteenmäki, A., Lamarre, J.-M., Lasenby, A., Lattanzi, M., Lawrence, C.R., Leahy, J.P., Leonardi, R., Lesgourgues, J., Levrier, F., Lewis, A., Liguori, M., Lilje, P.B., Linden-Vørnle, M., López-Caniego, M., Lubin, P.M., Macías-Pérez, J.F., Maggio, G., Maino, D., Mandolesi, N., Mangilli, A., Marchini, A., Maris, M., Martin, P.G., Martinelli, M., Martínez-González, E., Masi, S., Matarrese, S., McGehee, P., Meinhold, P.R., Melchiorri, A., Melin, J.-B., Mendes, L., Mennella, A., Migliaccio, M., Millea, M., Mitra, S., Miville-Deschênes, M.-A., Moneti, A., Montier, L., Morgante, G., Mortlock, D., Moss, A., Munshi, D., Murphy, J.A., Naselsky, P., Nati, F., Natoli, P., Netterfield, C.B., Nørgaard-Nielsen, H.U., Noviello, F., Novikov, D., Novikov, I., Oxborrow, C.A., Paci, F., Pagano, L., Pajot, F., Paladini, R., Paoletti, D., Partridge, B., Pasian, F., Patanchon, G., Pearson, T.J., Perdereau, O., Perotto, L., Perrotta, F., Pettorino, V., Piacentini, F., Piat, M., Pierpaoli, E., Pietrobon, D., Plaszczynski, S., Pointecouteau, E., Polenta, G., Popa, L., Pratt, G.W., Prézeau, G., Prunet, S., Puget, J.-L., Rachen, J.P., Reach, W.T., Rebolo, R., Reinecke, M., Remazeilles, M., Renault, C., Renzi, A., Ristorcelli, I., Rocha, G., Rosset, C., Rossetti, M., Roudier, G., Rouillé d’Orfeuil, B., Rowan-Robinson, M., Rubiño-Martín, J.A., Rusholme, B., Said, N., Salvatelli, V., Salvati, L., Sandri, M., Santos, D., Savelainen, M., Savini, G., Scott, D., Seiffert, M.D., Serra, P., Shellard, E.P.S., Spencer, L.D., Spinelli, M., Stolyarov, V., Stompor, R., Sudiwala, R.: Planck 2015 results. XIII. Cosmological parameters. A&A 594, 13 (2016). https://doi.org/10.1051/0004-6361/201525830. arXiv:https://arxiv.org/abs/1502.01589 [astro-ph.CO]

    Article  Google Scholar 

  27. Davis, M., Efstathiou, G., Frenk, C.S., White, S.D.M.: The evolution of large-scale structure in a universe dominated by cold dark matter. ApJ 292, 371–394 (1985). https://doi.org/10.1086/163168

    Article  ADS  Google Scholar 

  28. Simionescu, A., Allen, S.W., Mantz, A., Werner, N., Takei, Y., Morris, R.G., Fabian, A.C., Sanders, J.S., Nulsen, P.E.J., George, M.R., Taylor, G.B.: Baryons at the edge of the X-ray-brightest galaxy cluster. Science 331(6024), 1576 (2011). https://doi.org/10.1126/science.1200331. arXiv:https://arxiv.org/abs/1102.2429 [astro-ph.CO]

    Article  ADS  Google Scholar 

  29. Gastaldello, F., Simionescu, A., Mernier, F., Biffi, V., Gaspari, M., Sato, K., Matsushita, K.: The metal content of the hot atmospheres of galaxy groups. Universe 7(7), 208 (2021). https://doi.org/10.3390/universe7070208. arXiv:https://arxiv.org/abs/2106.13258 [astro-ph.CO]

    Article  ADS  Google Scholar 

  30. Kitzbichler, M.G., White, S.D.M.: The high-redshift galaxy population in hierarchical galaxy formation models. MNRAS 376(1), 2–12 (2007). https://doi.org/10.1111/j.1365-2966.2007.11458.x. arXiv:https://arxiv.org/abs/astro-ph/0609636 [astro-ph]

    Article  ADS  Google Scholar 

  31. Foster, A.R., Ji, L., Smith, R.K., Brickhouse, N.S.: Updated atomic data and calculations for X-ray spectroscopy. ApJ 756, 128 (2012). https://doi.org/10.1088/0004-637X/756/2/128. arXiv:https://arxiv.org/abs/1207.0576 [astro-ph.HE]

    Article  ADS  Google Scholar 

  32. Lehmer, B.D., Xue, Y.Q., Brandt, W.N., Alexander, D.M., Bauer, F.E., Brusa, M., Comastri, A., Gilli, R., Hornschemeier, A.E., Luo, B., Paolillo, M., Ptak, A., Shemmer, O., Schneider, D.P., Tozzi, P., Vignali, C.: The 4 Ms Chandra deep field-south number counts apportioned by source class: pervasive active galactic nuclei and the ascent of normal galaxies. ApJ 752, 46 (2012). https://doi.org/10.1088/0004-637X/752/1/46. arXiv:https://arxiv.org/abs/1204.1977

    Article  ADS  Google Scholar 

  33. Hickox, R.C., Markevitch, M.: Absolute measurement of the unresolved cosmic X-ray background in the 0.5-8 keV band with Chandra. ApJ 645, 95–114 (2006). https://doi.org/10.1086/504070. arXiv:https://arxiv.org/abs/astro-ph/0512542

    Article  ADS  Google Scholar 

  34. Wilms, J., Allen, A., McCray, R.: On the absorption of X-rays in the interstellar medium. ApJ 542, 914–924 (2000). https://doi.org/10.1086/317016. arXiv:https://arxiv.org/abs/astro-ph/0008425

    Article  ADS  Google Scholar 

  35. Arnaud, K.A., Jacoby, G.H., Barnes, J. (eds): XSPEC: The First Ten Years. Astronomical Society of the Pacific Conference Series, vol. 101, p. 17 (1996)

  36. Cash, W.: Parameter estimation in astronomy through application of the likelihood ratio. ApJ 228, 939–947 (1979). https://doi.org/10.1086/156922

    Article  ADS  Google Scholar 

  37. Humphrey, P.J., Liu, W., Buote, D.A.: χ2 and Poissonian data: biases even in the high-count regime and how to avoid them. ApJ 693(1), 822–829 (2009). https://doi.org/10.1088/0004-637X/693/1/822. arXiv:https://arxiv.org/abs/0811.2796 [astro-ph]

    Article  ADS  Google Scholar 

  38. Vijayan, A., Li, M.: X-ray spectra of circumgalactic medium around star-forming galaxies: connecting simulations to observations, pp. 2102–11510. arXiv:https://arxiv.org/abs/2102.11510 [astro-ph.GA] (2021)

  39. Wijers, N.A., Schaye, J.: The warm-hot circumgalactic medium around EAGLE-simulation galaxies and its detection prospects with X-ray line emission, pp. 2108–04847. arXiv:https://arxiv.org/abs/2108.04847 [astro-ph.GA] (2021)

  40. ZuHone, J.A., Biffi, V., Hallman, E.J., Randall, S.W., Foster, A.R., Schmid, C.: Simulating X-ray observations with python. arXiv:https://arxiv.org/abs/1407.1783 [astro-ph.IM] (2014)

  41. ZuHone, J.A., Hallman, E.J.: pyXSIM: Synthetic X-ray observations generator. Astrophysics Source Code Library (2016)

  42. Bradley, L., Sipőcz, B., Robitaille, T., Tollerud, E., Vinícius, Z., Deil, C., Barbary, K., Wilson, T.J., Busko, I., Günther, H.M., Cara, M., Conseil, S., Bostroem, A., Droettboom, M., Bray, E.M., Andersen Bratholm, L., Lim, P.L., Barentsen, G., Craig, M., Pascual, S., Perren, G., Greco, J., Donath, A., De Val-Borro, M., Kerzendorf, W., Bach, Y.P., Weaver, B.A., D’Eugenio, F., Souchereau, H., Ferreira, L.: astropy/photutils: 1.0.1. Zenodo. https://doi.org/10.5281/zenodo.4049061 (2020)

  43. Astropy Collaboration, Robitaille, T.P., Tollerud, E.J., Greenfield, P., Droettboom, M., Bray, E., Aldcroft, T., Davis, M., Ginsburg, A., Price-Whelan, A.M., Kerzendorf, W.E., Conley, A., Crighton, N., Barbary, K., Muna, D., Ferguson, H., Grollier, F., Parikh, M.M., Nair, P.H., Unther, H.M., Deil, C., Woillez, J., Conseil, S., Kramer, R., Turner, J.E.H., Singer, L., Fox, R., Weaver, B.A., Zabalza, V., Edwards, Z.I., Azalee Bostroem, K., Burke, D.J., Casey, A.R., Crawford, S.M., Dencheva, N., Ely, J., Jenness, T., Labrie, K., Lim, P.L., Pierfederici, F., Pontzen, A., Ptak, A., Refsdal, B., Servillat, M., Streicher, O.: Astropy: a community Python package for astronomy. A&A 558, 33 (2013). https://doi.org/10.1051/0004-6361/201322068. arXiv:https://arxiv.org/abs/1307.6212 [astro-ph.IM]

    Article  Google Scholar 

  44. Astropy Collaboration, Price-Whelan, A.M., Sipőcz, B.M., Günther, H.M., Lim, P.L., Crawford, S.M., Conseil, S., Shupe, D.L., Craig, M.W., Dencheva, N., Ginsburg, A., Vand erPlas, J.T., Bradley, L.D., Pérez-Suárez, D., de Val-Borro, M., Aldcroft, T.L., Cruz, K.L., Robitaille, T.P., Tollerud, E.J., Ardelean, C., Babej, T., Bach, Y.P., Bachetti, M., Bakanov, A.V., Bamford, S.P., Barentsen, G., Barmby, P., Baumbach, A., Berry, K.L., Biscani, F., Boquien, M., Bostroem, K.A., Bouma, L.G., Brammer, G.B., Bray, E.M., Breytenbach, H., Buddelmeijer, H., Burke, D.J., Calderone, G., Cano Rodríguez, J.L., Cara, M., Cardoso, J.V.M., Cheedella, S., Copin, Y., Corrales, L., Crichton, D., D’Avella, D., Deil, C., Depagne, É., Dietrich, J.P., Donath, A., Droettboom, M., Earl, N., Erben, T., Fabbro, S., Ferreira, L.A., Finethy, T., Fox, R.T., Garrison, L.H., Gibbons, S.L.J., Goldstein, D.A., Gommers, R., Greco, J.P., Greenfield, P., Groener, A.M., Grollier, F., Hagen, A., Hirst, P., Homeier, D., Horton, A.J., Hosseinzadeh, G., Hu, L., Hunkeler, J.S., Ivezić, ž., Jain, A., Jenness, T., Kanarek, G., Kendrew, S., Kern, N.S., Kerzendorf, W.E., Khvalko, A., King, J., Kirkby, D., Kulkarni, A.M., Kumar, A., Lee, A., Lenz, D., Littlefair, S.P., Ma, Z., Macleod, D.M., Mastropietro, M., McCully, C., Montagnac, S., Morris, B.M., Mueller, M., Mumford, S.J., Muna, D., Murphy, N.A., Nelson, S., Nguyen, G.H., Ninan, J.P., Nöthe, M., Ogaz, S., Oh, S., Parejko, J.K., Parley, N., Pascual, S., Patil, R., Patil, A.A., Plunkett, A.L., Prochaska, J.X., Rastogi, T., Reddy Janga, V., Sabater, J., Sakurikar, P., Seifert, M., Sherbert, L.E., Sherwood-Taylor, H., Shih, A.Y., Sick, J., Silbiger, M.T., Singanamalla, S., Singer, L.P., Sladen, P.H., Sooley, K.A., Sornarajah, S., Streicher, O., Teuben, P., Thomas, S.W., Tremblay, G.R., Turner, J.E.H., Terrón, V., van Kerkwijk, M.H., de la Vega, A., Watkins, L.L., Weaver, B.A., Whitmore, J.B., Woillez, J., Zabalza, V., Astropy Contributors: The astropy project: building an open-science project and status of the v2.0 core package. AJ 156(3), 123 (2018). https://doi.org/10.3847/1538-3881/aabc4f. arXiv:https://arxiv.org/abs/1801.02634 [astro-ph.IM]

    Article  ADS  Google Scholar 

  45. Hunter, J.D.: Matplotlib: a 2D graphics environment. Comput. Sci0 Eng. 9(3), 90–95 (2007). https://doi.org/10.1109/MCSE.2007.55

    Article  Google Scholar 

  46. Waskom, M., Botvinnik, O., O’Kane, D., Hobson, P., Ostblom, J., Lukauskas, S., Gemperline, D.C., Augspurger, T., Halchenko, Y., Cole, J.B., Warmenhoven, J., De Ruiter, J., Pye, C., Hoyer, S., Vanderplas, J., Villalba, S., Kunter, G., Quintero, E., Bachant, P., Martin, M., Meyer, K., Miles, A., Ram, Y., Brunner, T., Yarkoni, T., Williams, M.L., Evans, C., Fitzgerald, C., Brian, Qalieh, A.: mwaskom/seaborn: v0.9.0 (July 2018). Zenodo. https://doi.org/10.5281/zenodo.1313201 (2018)

  47. Nelson, D., Springel, V., Pillepich, A., Rodriguez-Gomez, V., Torrey, P., Genel, S., Vogelsberger, M., Pakmor, R., Marinacci, F., Weinberger, R., Kelley, L., Lovell, M., Diemer, B., Hernquist, L.: The IllustrisTNG simulations: public data release. Comput. Astrophy. Cosmol. 6(1), 2 (2019). https://doi.org/10.1186/s40668-019-0028-x. arXiv:https://arxiv.org/abs/1812.05609 [astro-ph.GA]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Dan McCammon for providing the XQC filter data and for useful discussions, and Zhansan Wang for providing preliminary data on the HUBS optics. We would also like to thank John ZuHone for useful suggestion on using some of the software packages, and Taotao Fang for advice on making mock observations. This work made use of several Python packages for astronomy, including pyXSIM [40, 41], photutils [42], astropy [43, 44]. The figures in this paper were made using the python matplotlib [45] and seaborn [46] package.

Funding

This work was supported in part by the Ministry of Science and Technology of China through its National Key R&D Program, Grant 2018YFA0404502, and by the National Natural Science Foundation of China through Grant 11821303.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Cui.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YN., Li, C., Xu, D. et al. Mock HUBS observations of hot gas with IllustrisTNG. Exp Astron 53, 1053–1074 (2022). https://doi.org/10.1007/s10686-022-09856-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-022-09856-7

Keywords