Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Is the evidence for dark energy secure?

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Several kinds of astronomical observations, interpreted in the framework of the standard Friedmann–Robertson–Walker cosmology, have indicated that our universe is dominated by a Cosmological Constant. The dimming of distant Type Ia supernovae suggests that the expansion rate is accelerating, as if driven by vacuum energy, and this has been indirectly substantiated through studies of angular anisotropies in the cosmic microwave background (CMB) and of spatial correlations in the large-scale structure (LSS) of galaxies. However there is no compelling direct evidence yet for (the dynamical effects of) dark energy. The precision CMB data can be equally well fitted without dark energy if the spectrum of primordial density fluctuations is not quite scale-free and if the Hubble constant is lower globally than its locally measured value. The LSS data can also be satisfactorily fitted if there is a small component of hot dark matter, as would be provided by neutrinos of mass ∼0.5 eV. Although such an Einstein–de Sitter model cannot explain the SNe Ia Hubble diagram or the position of the “baryon acoustic oscillation” peak in the autocorrelation function of galaxies, it may be possible to do so, e.g. in an inhomogeneous Lemaitre–Tolman–Bondi cosmology where we are located in a void which is expanding faster than the average. Such alternatives may seem contrived but this must be weighed against our lack of any fundamental understanding of the inferred tiny energy scale of the dark energy. It may well be an artifact of an oversimplified cosmological model, rather than having physical reality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams J.A., Ross G.G. and Sarkar S. (1997). Multiple inflation. Nucl. Phys. B 503: 405

    Article  ADS  Google Scholar 

  2. Aguirre A.N. (1999). Dust versus cosmic acceleration. Astrophys. J. 512: L19

    Article  ADS  Google Scholar 

  3. Allen S.W., Schmidt R.W., Ebeling H., Fabian A.C. and van Speybroeck L. (2004). Constraints on dark energy from Chandra observations of the largest relaxed galaxy clusters. Mon. Not. Roy. Astron. Soc. 353: 457

    Article  ADS  Google Scholar 

  4. Alnes H., Amarzguioui M. and Gron O. (2006). An inhomogeneous alternative to dark energy?. Phys. Rev. D 73: 083519

    Article  ADS  Google Scholar 

  5. Alnes H. and Amarzguioui M. (2007). The supernova Hubble diagram for off-center observers in a spherically symmetric inhomogeneous universe. Phys. Rev. D 75: 023506

    Article  ADS  Google Scholar 

  6. Astier, P., et al.: [The SNLS Collaboration], The supernova legacy survey: measurement of Omega M , Omega Lambda and w from the first year data set. Astron. Astrophys. 447, 31 (2006)

  7. Bahcall N., Ostriker J.P., Perlmutter S. and Steinhardt P.J. (1999). The cosmic triangle: revealing the state of the universe. Science 28: 1481

    Article  ADS  Google Scholar 

  8. Barris, B.J., et al.: 23 high redshift supernovae from the IfA deep survey: doubling the SN sample at z > 0.7. Astrophys. J. 602, 571 (2004)

    Google Scholar 

  9. Biswas, T., Mansouri, R., Notari, A.: Nonlinear structure formation and apparent acceleration: an investigation. arXiv:astro-ph/0606703

  10. Blanchard A., Douspis M., Rowan-Robinson M. and Sarkar S. (2003). An alternative to the cosmological ‘concordance model’. Astron. Astrophys. 412: 35

    Article  MATH  ADS  Google Scholar 

  11. Blanchard A., Douspis M., Rowan-Robinson M. and Sarkar S. (2006). Large-scale galaxy correlations as a test for dark energy. Astron. Astrophys. 449: 925

    Article  ADS  Google Scholar 

  12. Bonamente M., Joy M.K., La Roque S.J., Carlstrom J.E., Reese E.D. and Dawson K.S. (2006). Measurement of the cosmic distance scale from Chandra X-ray imaging and Sunyaev–Zel’dovich Effect mapping of high redshift clusters of galaxies. Astrophys. J. 647: 25

    Article  ADS  Google Scholar 

  13. Bond J.R., Crittenden R., Davis R.L., Efstathiou G. and Steinhardt P.J. (1994). Measuring cosmological parameters with cosmic microwave background experiments. Phys. Rev. Lett. 72: 13

    Article  ADS  Google Scholar 

  14. Bond J.R., Efstathiou G. and Tegmark M. (1997). Forecasting cosmic parameter errors from microwave background anisotropy experiments. Mon. Not. Roy. Astron. Soc. 291: L33

    ADS  Google Scholar 

  15. Carroll S.M., Press W.H. and Turner E.L. (1992). The cosmological constant. Ann. Rev. Astron. Astrophys. 30: 499

    Article  ADS  Google Scholar 

  16. Cayrel, R., et al.: Measurement of stellar age from uranium decay. Nature 409, 691 (2001)

    Google Scholar 

  17. Celerier M.N. (2000). Do we really see a cosmological constant in the supernovae data?. Astron. Astrophys. 353: 63

    ADS  Google Scholar 

  18. Choudhury T.R. and Padmanabhan T. (2005). A theoretician’s analysis of the supernova data and the limitations in determining the nature of dark energy II: Results for latest data. Astron. Astrophys. 429: 807

    Article  MATH  ADS  Google Scholar 

  19. Cole, S., et al.: [The 2dFGRS Collaboration], The 2dF galaxy redshift survey: power-spectrum analysis of the final dataset and cosmological implications. Mon. Not. Roy. Astron. Soc. 362, 505 (2005)

    Google Scholar 

  20. Conley, A. Carlberg, R.G., Guy, J., Howell, D.A., Jha, S., Riess, A.G., Sullivan, M.: Is there evidence for a Hubble bubble? The nature of SN Ia colors and dust in external galaxies. arXiv:0705.0367 [astro-ph]

  21. Cooray A. and Caldwell R.R. (2006). Large-scale bulk motions complicate the Hubble Diagram. Phys. Rev. D 73: 103002

    Article  ADS  Google Scholar 

  22. Copeland E.J., Sami M. and Tsujikawa S. (2006). Dynamics of dark energy. Int. J. Mod. Phys. D 15: 1753

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Cyburt R.H., Fields B.D., Olive K.A. and Skillman E. (2005). New BBN limits on physics beyond the Standard Model from He-4. Astropart. Phys. 23: 313

    Article  ADS  Google Scholar 

  24. de Bernardis, P., et al.: [Boomerang Collaboration], A flat universe from high-resolution maps of the cosmic microwave background radiation. Nature 404, 955 (2000)

    Google Scholar 

  25. Douglas M.R. and Kachru S. (2007). Flux compactification. Rev. Mod. Phys. 79: 733

    Article  ADS  MathSciNet  Google Scholar 

  26. Drell P.S., Loredo T.J. and Wasserman I. (2000). Type Ia supernovae, evolution, and the cosmological constant. Astrophys. J. 530: 593

    Article  ADS  Google Scholar 

  27. Drexlin, G.: [KATRIN Collaboration], KATRIN: Direct measurement of a sub-eV neutrino mass. Nucl. Phys. Proc. Suppl. 145, 263 (2005)

    Google Scholar 

  28. Efstathiou G. and Bond J.R. (1999). Cosmic confusion: degeneracies among cosmological parameters derived from measurements of microwave background anisotropies. Mon. Not. Roy. Astron. Soc. 304: 75

    Article  ADS  Google Scholar 

  29. Einstein, A.: Sitzungsber. Preuss. Akad. Wiss. phys.-math. Klasse VI 142 (1917)

  30. Eisenstein, D.J., et al.: [SDSS Collaboration], Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys. J. 633, 560 (2005)

    Google Scholar 

  31. Elgaroy O. and Lahav O. (2003). The role of priors in deriving upper limits on neutrino masses from the 2dFGRS and WMAP. JCAP 0304: 004

    ADS  Google Scholar 

  32. Enqvist K. and Mattsson T. (2007). The effect of inhomogeneous expansion on the supernova observations. JCAP 0702: 019

    ADS  Google Scholar 

  33. Fields, B., Sarkar, S.: Big-bang nucleosynthesis (PDG mini-review). arXiv:astro-ph/0601514

  34. Freedman, W.L., et al.: Final results from the Hubble Space Telescope Key Project to measure the Hubble constant. Astrophys. J. 55, 47 (2001)

    Google Scholar 

  35. Frith W.J., Metcalfe N. and Shanks T. (2006). New H-band galaxy number counts: a large local hole in the galaxy distribution?. Mon. Not. Roy. Astron. Soc. 371: 1601

    Article  ADS  Google Scholar 

  36. Geller M.J. and Huchra J.P. (1989). Mapping the universe. Science 246: 897

    Article  ADS  Google Scholar 

  37. Hanany, S., et al.: MAXIMA-1: A measurement of the cosmic microwave background anisotropy on angular scales of 10 arcminutes to 5 degrees. Astrophys. J. 545, L5 (2000)

  38. Hillebrandt W. and Niemeyer J.C. (2000). Type Ia supernova explosion models. Ann. Rev. Astron. Astrophys. 38: 191

    Article  ADS  Google Scholar 

  39. Hu W., Sugiyama N. and Silk J. (1997). The physics of microwave background anisotropies. Nature 386: 37

    Article  ADS  Google Scholar 

  40. Hui L. and Greene P.B. (2006). Correlated fluctuations in luminosity distance and the importance of peculiar motion in supernova surveys. Phys. Rev. D 73: 123526

    Article  ADS  Google Scholar 

  41. Hunt, P., Sarkar, S.: Multiple inflation and the WMAP ‘glitches’ II. Data analysis and cosmological parameter extraction. arXiv:0706.2443 [astro-ph]

  42. Inoue K.T. and Silk J. (2006). Local voids as the origin of large-angle cosmic microwave background anomalies. Astrophys. J. 648: 23

    Article  ADS  Google Scholar 

  43. Jackson, N.: The Hubble constant. arXiv:0709.3924 [astro-ph]

  44. Jena, T., et al.: A concordance model of the Lyman-alpha Forest at z = 1.95. Mon. Not. Roy. Astron. Soc. 361, 70 (2005)

    Google Scholar 

  45. Jha S., Riess A.G. and Kirshner R.P. (2007). Improved distances to Type Ia supernovae with Multicolor Light Curve Shapes: MLCS2k2. Astrophys. J. 659: 122

    Article  ADS  Google Scholar 

  46. Jungman G., Kamionkowski M., Kosowsky A. and Spergel D.N. (1996). Cosmological parameter determination with microwave background maps. Phys. Rev. D 54: 1332

    Article  ADS  Google Scholar 

  47. Kochanek C.S. and Schechter P.L. (2004). The Hubble constant from gravitational lens time delays. In: Freedman, W. (eds) Measuring and Modeling the Universe, pp 117. Cambridge University Press, Cambridge

    Google Scholar 

  48. Koyama, K.: Ghosts in the self-accelerating universe. arXiv:0709.2399 [hep-th]

  49. Krasinski A. (1997). Inhomogeneous Cosmological Models. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  50. Krauss L.M. and Chaboyer B. (2003). Age estimates of globular clusters in the Milky Way: constraints on cosmology. Science 299: 65

    Article  ADS  Google Scholar 

  51. Leibundgut B. (2000). Type Ia Supernovae. Astron. Astrophys. Rev. 10: 179

    Article  ADS  Google Scholar 

  52. Lue A. (2006). The phenomenology of Dvali-Gabadadze-Porrati cosmologies. Phys. Rept. 423: 1

    Article  ADS  MathSciNet  Google Scholar 

  53. McClure M.L. and Dyer C.C. (2007). Anisotropy in the Hubble constant as observed in the HST extragalactic distance scale Key Project results. New Astron. 12: 533

    Article  ADS  Google Scholar 

  54. Nobbenhuis S. (2006). Categorizing different approaches to the cosmological constant problem. Found. Phys. 36: 613

    Article  MATH  MathSciNet  Google Scholar 

  55. Padmanabhan T. (2003). Cosmological constant: the weight of the vacuum. Phys. Rept. 380: 235

    Article  MATH  ADS  MathSciNet  Google Scholar 

  56. Peebles, P.J.E.: The cosmological tests. astro-ph/0102327

  57. Peebles P.J.E. and Ratra B. (2003). The cosmological constant and dark energy. Rev. Mod. Phys. 75: 559

    Article  ADS  MathSciNet  Google Scholar 

  58. Perlmutter, S., et al.: [Supernova Cosmology Project Collaboration], Measurements of Omega and Lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565 (1999)

    Google Scholar 

  59. Reese, E.D.: Measuring the Hubble constant with the Sunyaev–Zeldovich effect. In: Freedman, W. (ed.) Measuring and Modeling the Universe, p. 138. Cambridge University Press, Cambridge (2004)

  60. Riess, A.G., et al.: [Supernova Search Team Collaboration], Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998)

    Google Scholar 

  61. Riess, A.G., et al.: [Supernova Search Team Collaboration], Type Ia supernova discoveries at z >  1 from the Hubble Space Telescope: evidence for past deceleration and constraints on dark energy evolution. Astrophys. J. 607, 665 (2004)

    Google Scholar 

  62. Rowan-Robinson, M.: Cosmological parameters: do we already know the final answer? In: Spooner, N., Kudryavtsev, V. (eds.) Third International Conference on Identification of Dark Matter. World Scientific, Singapore (2001)

  63. Rowan-Robinson M. (2002). Do type Ia supernovae prove Lambda >  0?. Mon. Not. Roy. Astron. Soc. 332: 352

    Article  ADS  Google Scholar 

  64. Rudnick, L., Brown, S., Williams, L.R.: Extragalactic radio sources and the WMAP cold spot. arXiv:0704.0908 [astro-ph]

  65. Saha P., Coles J., Maccio A.V. and Williams L.L.R. (2006). The Hubble time inferred from 10 time-delay lenses. Astrophys. J. 650: L17

    Article  ADS  Google Scholar 

  66. Sahni V. and Starobinsky A.A. (2000). The case for a positive cosmological Lambda-term. Int. J. Mod. Phys. D 9: 373

    ADS  Google Scholar 

  67. Sandage M.A., Tammann G.A., Saha A., Reindl B., Macchetto F.D. and Panagia N. (2006). The Hubble constant: a summary of the HST program for the luminosity calibration of Type Ia supernovae by means of cepheids. Astrophys. J. 653: 843

    Article  ADS  Google Scholar 

  68. Schwarz, D.J., Weinhorst, B.: (An)isotropy of the Hubble diagram: comparing hemispheres. arXiv:0706.0165 [astro-ph]

  69. Spergel D.N., et al.: [WMAP Collaboration], First year Wilkinson Microwave Anisotropy Probe observations: determination of cosmological parameters. Astrophys. J. Suppl. 148, 175 (2003)

    Google Scholar 

  70. Spergel, D.N., et al.: [WMAP Collaboration], Wilkinson Microwave Anisotropy Probe three year results: implications for cosmology. Astrophys. J. Suppl. 170, 377 (2007)

    Google Scholar 

  71. Straumann, N.: On the cosmological constant problems and the astronomical evidence for a homogeneous energy density with negative pressure. In: Duplantier, B., Rivasseu, V. (eds.) Séminaire Poincaré: Vacuum Energy—Renormalization, p. 7. Birkhäuser-Verlag, Basel (2003)

  72. Tegmark, M., et al.: [SDSS Collaboration], The 3D power spectrum of galaxies from the SDSS. Astrophys. J. 606, 702 (2004)

    Google Scholar 

  73. Tegmark M., Aguirre A., Rees M. and Wilczek F. (2006). Dimensionless constants, cosmology and other dark matters. Phys. Rev. D 73: 023505

    Article  ADS  Google Scholar 

  74. Tomita K. (2000). Bulk flows and cosmic microwave background dipole anisotropy in cosmological void models. Astrophys. J. 529: 26

    Article  ADS  Google Scholar 

  75. Tomita K. (2001). Anisotropy of the Hubble constant in a cosmological model with a local void on scales of 200 Mpc. Prog. Theor. Phys. 105: 419

    Article  ADS  Google Scholar 

  76. Tomita K. (2001). A local void and the accelerating universe. Mon. Not. Roy. Astron. Soc. 326: 287

    Article  ADS  Google Scholar 

  77. Tomita K. (2001). Analyses of Type Ia Supernova data in cosmological models with a local void. Prog. Theor. Phys. 106: 929

    Article  ADS  Google Scholar 

  78. Tomita K. (2003). Dipole anisotropies of IRAS galaxies and the contribution of a large-scale local void. Astrophys. J. 584: 580

    Article  ADS  Google Scholar 

  79. Tonry J.L., et al.: [Supernova Search Team Collaboration], Cosmological results from high-z supernovae. Astrophys. J. 594, 1 (2003)

    Google Scholar 

  80. Van Waerbeke L., Mellier Y. and Hoekstra H. (2005). Dealing with systematics in cosmic shear studies: new results from the VIRMOS-Descart survey. Astron. Astrophys. 429: 75

    Article  ADS  Google Scholar 

  81. Wang Y., Spergel D.N. and Turner E.L. (1998). Implications of cosmic microwave background anisotropies for large scale variations in Hubble’s constant. Astrophys. J. 498: 1

    Article  ADS  Google Scholar 

  82. Wood-Vasey, W.M., et al.: Observational constraints on the nature of the dark energy: first cosmological results from the ESSENCE supernova survey. Astrophys. J. L666, 694 (2007)

    Article  ADS  Google Scholar 

  83. Weinberg S. (1989). The cosmological constant problem. Rev. Mod. Phys. 61: 1

    Article  ADS  MathSciNet  Google Scholar 

  84. Weinberg, S.: Theories of the cosmological constant. In: Cline D. (ed.) Sources and detection of dark matter and dark energy in the universe. Springer, Berlin, p. 18 (2000)

    Google Scholar 

  85. Weinberg S. (2000). A priori probability distribution of the cosmological constant. Phys. Rev. D 61: 103505

    Article  ADS  MathSciNet  Google Scholar 

  86. Witten, E.: The cosmological constant from the viewpoint of string theory. In: Cline, D. (ed.) Sources and detection of dark matter and dark energy in the universe, p. 27. Springer, Berlin (2000)

    Google Scholar 

  87. Yao, W.M., et al.: [Particle Data Group], Review of particle physics. J. Phys. G 33, 1 (2006)

    Article  ADS  Google Scholar 

  88. Zehavi I., Riess A.G., Kirshner R.P. and Dekel A. (1998). A local Hubble bubble from SNe Ia?. Astrophys. J. 503: 483

    Article  ADS  Google Scholar 

  89. Zwirner, F.: Extensions of the standard model. In: International europhysics conference on high energy physics, Brussels, p. 943. World Scientific, Singapore (1996)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subir Sarkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarkar, S. Is the evidence for dark energy secure?. Gen Relativ Gravit 40, 269–284 (2008). https://doi.org/10.1007/s10714-007-0547-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-007-0547-7

Keywords