Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

THz Communications using Photonics and Electronic Devices: the Race to Data-Rate

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

With the mass development of mobile data transfers, wireless communications have recently entered a new area: the carrier frequency is now entering the THz region. After a brief overview of context and key features of THz communication, focus is given on photonic-based THz emitters based on quasi-optic UTC-PDs. A special design of wideband photomixer is presented and its applications for narrow bandwidth THz generation. Using this photomixer, communication links at 200, 400 and 600 GHz are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

References

  1. S. Cherry, “Edholm’s law of bandwidth”, IEEE Spectrum 41, 7, pp. 58–60, Jul. 2004.

  2. T.S. Bird, Keynote talk at Asia-Pacific Microwave Conference, (December 2011).

  3. F. Feng, H. Page, R.V. Penty, I.H. White, T.D. Wilkinson, N. Michel, M. Calligaro, Y. Robert, O. Parillaud, and M. Krakowski, “Free space optical wireless communications using directly modulated two-electrode high brightness tapered laser diode”, Electron. Lett. 48, 5, pp. 281-283 (2012).

    Article  Google Scholar 

  4. J. Wang, J.-Y. Yang, I.M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar,M. Tur, and A. E.Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing”, Nat. Photonics 6(7), 488–496 (2012).

  5. J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications”, Journ. Appl. Phys. 107, 111101 (2010).

    Article  Google Scholar 

  6. L. Moeller, K. Su, R. Barat, and J. F. Federici, “THz and IR Signaling through Fog Scintillations”, Proceedings. Eur. Wireless, Poznan, Poland, Apr. 18–20, 2012, pp. 1–5.

  7. T. Kleine-Ostmann, and T. Nagatsuma, "A review on terahertz communications research," Journal of Infrared, Millimeter, and Terahertz Waves, vol. 32, no. 2, pp. 143-171, 2011.

    Article  Google Scholar 

  8. L. Moeller, J. Federici and K. Su, “2.5Gbit/s duobinary signalling with narrow bandwidth 0.625 terahertz source“, Electron. Lett. 47, 15, pp 856-858 (2011).

    Article  Google Scholar 

  9. A. Hirata, T. Kosugi, H. Takahashi, J. Takeuchi, H. Togo, M. Yaita, N. Kukutsu, K. Aihara, K. Murata, Y. Sato, T. Nagatsuma, Y. Kado, “120-GHz-Band Wireless Link Technologies for Outdoor 10-Gbit/s Data Transmission”, IEEE Trans. Microwave Theory Tech. 60, 3, pp. 881-895, (2012).

    Article  Google Scholar 

  10. K. Ishigaki, M. Shiraishi, S. Suzuki, M. Asada, N. Nishiyama and S. Arai, “Direct intensity modulation and wireless data transmission characteristics of terahertz-oscillating resonant tunnelling diodes”, Electron. Lett. 48, 10 pp. 582-583, (2012).

    Article  Google Scholar 

  11. C. Jastrow, S. Priebe, B. Spitschan, J. Hartmann, M. Jacob, T. Kürner, T. Schrader and T. Kleine-Ostmann, “Wireless digital data transmission at 300 GHz”, Electron. Lett. 46, 9, pp. 661-663, (2010).

    Article  Google Scholar 

  12. C. Wang, B. Lu, C. Lin, Q. Chen, L. Miao, X. Deng, and J. Zhang, ” 0.34-THz Wireless Link Based on High-Order Modulation for Future Wireless Local Area Network Applications”, IEEE Trans. THz Sci. Technol. 4, 1 pp. 75-85, (2014).

    Article  Google Scholar 

  13. J. Antes, S. Koenig, D. Lopez-Diaz, F. Boes, A. Tessmann, R. Henneberger, O. Ambacher, T. Zwick, I. Kallfass, “Transmission of an 8-PSK Modulated 30Gbit/s Signal Using an MMIC-Based 240GHz Wireless Link”, Proc. IMS Conf. (2013).

  14. S. Sarkozy, M. Vukovic, J. G. Padilla, J. Chang, G. Tseng, P. Tran, P. Yocom, W. Yamasaki, K.M.K.H. Leong, and W.Lee, “Demonstration of a G-Band Transceiver for Future Space Crosslinks”, IEEE Trans. THz Sci. Technol. 3, 5, pp. 671-681, (2013).

  15. J. Antes, S. Konig, A. Leuther, H.Massler, J. Leuthold, O. Ambacher, and I. Kallfass, “220GHz wireless data transmission experiments up to 30Gbit/s”, Proc. IMS Conf. (2012).

  16. J. Montero-de-Paz, I. Oprea, V. Rymanov, S. Babiel, L. Enrique Garcia-Munoz, A. Lisauskas, M. Hoefle, A. Jimenez, O. Cocojari, D. Segovia-Vargas, M. Palandöken, T. Tekin, A. Sthör, G. Carpintero, ” Compact Modules for Wireless Communication Systems in the E-Band (71–76 GHz)” J. Infrared Milli. Terah Waves 34 (3), pp. 251-256 (2014).

    Google Scholar 

  17. X. Pang, A. Caballero, A. Dogadaev, V. Arlunno, R. Borkowski, J. S. Pedersen, L. Deng, F. Karinou, F. Roubeau, D. Zibar, X. Yu, and I. T. Monroy, “100 Gbit/s hybrid optical fiber-wireless link in the W-band, (75–110 GHz)”, Opt. Exp., vol. 19 (2011), Art. ID 24949.

    Article  Google Scholar 

  18. X. Li, J. Yu, J. Zhang, Z. Dong, F. Li, and N. Chi, Opt. Exp. “A 400G optical wireless integration delivery system” 21, 16 (2013), Art. ID 187894.

    Google Scholar 

  19. T. Ishibashi, S. Kodama, N. Shimizu, and T. Furuta, “High-speed response of uni-traveling-carrier photodiodes,” Japanese Journal of Applied Physics, vol. 36, no. 10, pp. 6263–6268 (1997).

    Article  Google Scholar 

  20. H.-J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, “24 Gbit/s data transmission in 300 GHz band for future terahertz communications”, Electron. Lett., 48, 15, pp. 953-954 (2012).

    Article  Google Scholar 

  21. A. Hirata, T. Kosugi, H. Takahashi,R. Yamaguchi,F. Nakajima,T. Furuta, H. Ito, H. Sugahara, Y. Sato, and T. Nagatsuma, “120-GHz-band millimeter-wave photonic wireless link for 10-Gb/s data transmission”, IEEE Trans. Microw. Theory Techn., 54, 5, pp. 1937-1944 (2006).

    Article  Google Scholar 

  22. M. J. Fice, E. Rouvalis, F. van Dijk, A. Accard, F. Lelarge, C. C. Renaud, G. Carpintero, and A. J. Seeds, “146-GHz millimeter-wave radio-over-fiber photonic wireless transmission system”, Opt. Exp., 20, pp. 1769-1774 (2012).

    Article  Google Scholar 

  23. G. Ducournau ,P. Szriftgiser,D. Bacquet,A. Beck,T. Akalin,E. Peytavit, M. Zaknoune, and J. F. Lampin, “Optically power supplied Gbit/s wireless hotspot using 1.55 mm THz photomixer and heterodyne detection at 200 GHz”, Electron. Lett., 46, 19, pp. 1349 – 1351 (2010).

    Article  Google Scholar 

  24. G. Ducournau, Y. Yoshimizu, S. Hisatake, F. Pavanello, E. Peytavit, M. Zaknoune, T. Nagatsuma and J.-F. Lampin, “Coherent THz communication at 200 GHz using a frequency comb, UTC-PD and electronic detection”, Electron. Lett., 50, 5, pp. 386–388 (2014).

    Article  Google Scholar 

  25. S. Koenig, F. Boes, D. Lopez-Diaz, J. Antes, R. Henneberger, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, I. Kallfass, and J. Leuthold, “100 Gbit/s Wireless Link with mm-Wave Photonics”, Proc. Opt. Fiber Conf., paper PDP5B.4 (2013).

  26. S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate”, Nature Photon. (2013), DOI: 10.1038/NPHOTON.2013.275.

    Google Scholar 

  27. T. Nagatsuma, S. Horiguchi, Y. Minamikata, Y. Yoshimizu, S. Hisatake, S. Kuwano, N. Yoshimoto, J. Terada, and H. Takahashi, “Terahertz wireless communications based on photonics technologies”, Opt. Exp. 21, 20, pp. 23736-23747 (2013).

    Article  Google Scholar 

  28. G. Ducournau, P. Szriftgiser, A. Beck, D. Bacquet, F. Pavanello, E. Peytavit, M. Zaknoune, T. Akalin and J.F. Lampin, “Ultrawide-Bandwidth Single-Channel 0.4-THz Wireless Link Combining Broadband Quasi-Optic Photomixer and Coherent Detection”, IEEE Trans. THz Sci. Technol. 4, pp. 328-337, (2014).

    Article  Google Scholar 

  29. H.-J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, “Uni-travelling-carrier photodiode module generating 300 GHz power greater than 1 mW”, IEEE Microw. Wireless Compon. Lett., 22, 7, pp. 363–365 (2012).

    Article  Google Scholar 

  30. E. Peytavit, P. Latzel, F. Pavanello, G. Ducournau, and J. F. Lampin, “CW Source Based on Photomixing With Output Power Reaching 1.8 mW at 250”, IEEE Electr. Device Lett,. vol. 34, no. 10, pp. 1277-1279 (2013).

    Article  Google Scholar 

  31. G. Ducournau, F. Pavanello, A. Beck, L. Tohme, S. Blin, P. Nouvel, E. Peytavit, M. Zaknoune, P. Szriftgiser and J.F. Lampin, “High-definition television transmission at 600 GHz combining THz photonics hotspot and high-sensitivity heterodyne receiver”, Electron. Lett., 50, 5, pp.413-415 (2014).

  32. P.D. Grant, S.R. Laframboise, R. Dudek, M. Graf, A. Bezinger and H.C. Liu, “Terahertz free space communications demonstration with quantum cascade laser and quantum well photodetector”, Electron. Lett., 45, 18, pp. 952-954 (2009).

    Article  Google Scholar 

  33. W.R. Deal, X.B. Mei,V. Radisic,K. Leong,S. Sarkozy,B. Gorospe, J. Lee, P. H. Liu, W. Yoshida, J. Zhou, M. Lange, J. Uyeda, and R. Lai, “Demonstration of a 0.48 THz Amplifier Module Using InP HEMT Transistors”, IEEE Microw. Wireless Compon. Lett. 20, 5, pp. 289-291 (2010).

    Article  Google Scholar 

  34. U. J. Lewark, H. Theveneau, A. Tessmann, H. Massler, A. Leuther, T. Zwick and I. Kallfass, “A 440 GHz balanced active frequency multiplier-by-four SMMIC”, Proceedings of the 8th European Microwave Integrated Circuits Conference (2013), pp. 216-219.

  35. H.J. Song, J.Y. Kim, K. Ajito, N. Kukutsu and Makoto Yaita, “50-Gb/s Direct Conversion QPSK Modulator and Demodulator MMICs for Terahertz Communications at 300 GHz”, IEEE Trans. Microw. Theor. Tech. 62, 3, pp. 600-609 (2014).

    Article  Google Scholar 

  36. H.-J. Song, J. Y. Kim, K. Ajito, M. Yaita, and N. Kukutsu, “Fully Integrated ASK Receiver MMIC for Terahertz Communications at 300 GHz”, IEEE Trans. THz Sci. Technol. 3, 4, pp. 445-452 (2013).

    Article  Google Scholar 

  37. M. Inoue, M. Hodono, S. Horiguchi, K. Arakawa, M. Fujita and T. Nagatsuma, ”Ultra-Broadband Terahertz Receivers Using Polymer Substrate”, IEEE Trans. THz Sci. Technol. 4, 2, pp. 225-231 (2014).

    Article  Google Scholar 

  38. B. Khamaisi, S. Jameson, and E. Socher, “A 210–227 GHz Transmitter With Integrated On-Chip Antenna in 90 nm CMOS Technology”, IEEE Trans. THz Sci. Technol. 3, 2, pp. 141-150 (2013).

    Article  Google Scholar 

  39. M.J. Rosker, “Imaging through the Atmosphere at Terahertz Frequencies”, International Microwave Symposium (2007).

  40. Recommandation ITU « UIT-R P.676-3 », (1997).

  41. FUJITSU E-BAND SOLUTION, www.fujitsu.com, (2012). Accessed Feb 2013.

  42. S. Priebe and T. Kuerner, Interference between THz Communications and Spaceborne Earth Exploration Services (IG THz Document), https://mentor.ieee.org/802.15/dcn/12/15-12-0324-00-0thz-interference-between-thz-communications-and-spaceborne-earth-exploration-services.pdf, Accessed 29 April 2014.

  43. S. Silver, Microwave Theory and Design, in MIT Radiation Laboratory Series #12 (1949).

  44. K. Miyauchi, Millimeter-Wave Communications, IRMMW - Vol. 9 - Millimeter Components and Techniques, Part I, ISBN 0-12-147709-6 (1983).

  45. Rohde & Schwarz, www.rohde-schwarz.com/, Accessed 29 April 2014.

  46. Virginia Diodes, www.vadiodes.com, Accessed 29 April 2014.

  47. E. Peytavit, J.-F. Lampin, T. Akalin, and L. Desplanque, “Integrated terahertz horn antenna”, Electron. Lett. 43, 2, pp.73-75 (2007).

  48. E. Peytavit, A. Beck, T. Akalin, J.-F Lampin, F. Hindle, C. Yang and G. Mouret., “Continuous terahertz-wave generation using a monolithically integrated horn antenna”, Appl. Phys. Lett. 93, 11, pp. 111108–111110 (2008).

    Article  Google Scholar 

  49. J.F. Lampin, E. Peytavit, T. Akalin, G. Ducournau, J. Klier, S. Wohnsiedler, J. Jonuscheit and R. Beigang, 36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), (2011).

  50. A. Beck, G. Ducournau, M. Zaknoune, E. Peytavit, T. Akalin, J.F. Lampin, F. Mollot, F. Hindle, C. Yang and G. Mouret, “High-efficiency uni-travelling-carrier photomixer at 1.55 μm and spectroscopy application up to 1.4 THz”, Electron. Lett. 44, 22, pp. 1320-1321 (2008).

    Article  Google Scholar 

  51. L. Prissette; G. Ducournau, T. Akalin, E. Peytavit, A. Beck, M. Zaknoune, D. Ducatteau, J.F. Lampin, ” Radiation Pattern Measurements of an Integrated Transverse Electromagnetic Horn Antenna Using a Terahertz Photomixing Setup”, IEEE Microwave and Wireless Components Lett., 21, 1, pp. 49-51 (2011).

    Article  Google Scholar 

  52. B.J. Drouin, F.W. Maiwald and J.C. Pearson, “Application of cascaded frequency multiplication to molecular spectroscopy”, Rev. Sci. Instrum. 76, 093113 (2005).

    Article  Google Scholar 

  53. Hyodo M, Tani M, Matsuura S, Onodera N and Sakai K, “Generation of millimetre-wave generation using a dual-longitudinal mode microchip laser”, Electron. Lett. 32(17), 1589 (1996).

    Article  Google Scholar 

  54. J.-F. Cliche, B. Shillue, M. Têtu, and M. Poulin, “A 100-GHz-tunable photonic millimeter wave synthesizer for the Atacama Large Millimeter Array radiotelescope,” IEEE/MTT-S International Microwave Symposium (IMS), (2007).

  55. G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J.-P. Huignard, and A. Le Floch, “Dual-frequency laser at 1.5 μm for optical distribution and generation of high-purity microwave signals,” J. Lightwave Technol. 26(15), 2764 (2008).

    Article  Google Scholar 

  56. S. Latkowski, J. Parra-Cetina, R. Maldonado-Basilio, P. Landais, G. Ducournau, A. Beck, E. Peytavit, T. Akalin and J.F. Lampin, “Analysis of a narrowband terahertz signal generated by a unitravelling carrier photodiode coupled with a dual-mode semiconductor Fabry–Pérot laser”, Applied physics Letters, 96, 241106 (2010).

    Article  Google Scholar 

  57. L. Stokes, M. Chodorow, and H. Shaw, “L. Stokes, M. Chodorow, and H. Shaw, "All-fiber stimulated Brillouin ring laser with submilliwatt pump threshold," Opt. Lett. 7, 509 (1982).

  58. A. Debut, S. Randoux, and J. Zemmouri, “Experimental and theoretical study of linewidth narrowing in Brillouin fiber ring lasers,” J. Opt. Soc. Am. B 18, 556 (2001).

    Article  Google Scholar 

  59. G. Ducournau, P. Szriftgiser, T. Akalin, A. Beck, D. Bacquet, E. Peytavit, and J.F. Lampin, “Highly coherent THz wave generation with a dual frequency Brillouin fiber laser and a 1.55 μm photomixer”, Opt. Lett. vol. 36, no. 11, pp. 2044, (2011).

    Article  Google Scholar 

  60. G. Ducournau, D. Bacquet, P. Szriftgiser, F. Pavanello, E. Peytavit, M. Zaknoune, A. Beck and J.-F. Lampin, “Cascaded Brillouin fibre lasers coupled to unitravelling carrier photodiodes for narrow linewidth terahertz generation”, Electron. Lett. 50, 9, pp. 690-692 (2014).

    Article  Google Scholar 

  61. A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, J.F. Lampin, F. Bondu, Marc Vallet, and Mehdi Alouini, “Narrow Linewidth Tunable Terahertz Radiation By Photomixing Without Servo-Locking”, IEEE Trans. THz Sci. Technol. 3 pp. 260-266 (2014).

    Article  Google Scholar 

  62. R. Kakimi, M. Fujita, M. Nagai, M. Ashida and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab”, Nature Photonics 8, pp. 657–663 (2014) doi:10.1038/nphoton.2014.150.

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank F. Mollot, X. Wallart, and C. Coinon for UTC-PD epitaxial growth, D. Ducatteau, S. Lepilliet, and V. Avramovic of IEMN characterization center. The authors also thank the IRCICA/IEMN Telecom platform (R. Kassi) for the BERT supply and discussions. The authors would also like to thank Agilent Technologies and Anritsu for PRBS tests and Teledyne Lecroy for providing the 45-GHz serial data analyzer.

This work has been partially supported by the European commission in the framework of initial training network (ITN) MITEPHO Marie Curie program, the “Agence Nationale de la Recherche” in the “WITH” ANR/JST franco-japanese project. The authors thanks T. Nagatsuma and his team for the join experiments at 200 GHz, and the University of Montpellier for common experiments at IEMN. This work has also been supported also by Ministry of Higher Education and Research, Nord-Pas de Calais Regional Council and FEDER through the “Contrat de Projets Etat Région “Campus Intelligente Ambiante” (CPER-CIA) 2007-2013”, the equipex program “FLUX”, Fiber optics for high Fluxes and the “COM’TONIQ” ANR project (grant ANR-13-INFR-0011-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Ducournau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ducournau, G., Szriftgiser, P., Pavanello, F. et al. THz Communications using Photonics and Electronic Devices: the Race to Data-Rate. J Infrared Milli Terahz Waves 36, 198–220 (2015). https://doi.org/10.1007/s10762-014-0112-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-014-0112-x

Keywords