Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Quantum ω-Automata over Infinite Words and Their Relationships

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Inspired by the results of finite automata working on infinite words, we studied the quantum ω-automata with Büchi, Muller, Rabin and Streett acceptance condition. Quantum finite automata play a pivotal part in quantum information and computational theory. Investigation of the power of quantum finite automata over infinite words is a natural goal. We have investigated the classes of quantum ω-automata from two aspects: the language recognition and their closure properties. It has been shown that quantum Muller automaton is more dominant than quantum Büchi automaton. Furthermore, we have demonstrated the languages recognized by one-way quantum finite automata with different quantum acceptance conditions. Finally, we have proved the closure properties of quantum ω-automata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21 (6-7), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  2. Nielsen, M.A., Chuang, I: Quantum computation and quantum information (2002)

  3. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: The collected works of J. Richard Büchi, Springer, pp. 425–435 (1990)

  4. Muller, D.E.: Infinite sequences and finite machines. In: Proceedings of the 4th Annual Symposium on Switching Circuit Theory and Logical Design, IEEE, 1963, pp. 3–16

  5. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5(3), 183–191 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  6. McNaughton, R.: Testing and generating infinite sequences by a finite automaton. Inf. Control. 9(5), 521–530 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  7. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees. Trans. Amer. Math. Soc. 141, 1–35 (1969)

    MathSciNet  MATH  Google Scholar 

  8. Bhatia, A.S., Kumar, A.: Neurocomputing approach to matrix product state using quantum dynamics. Quantum Inf. Process 17(10), 278 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Bhatia, A.S., Kumar, A.: Modeling of rna secondary structures using two-way quantum finite automata. Chaos, Solitons Fractals 116, 332–339 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  10. Yakaryılmaz, A.: Superiority of one-way and realtime quantum machines. RAIRO-Theoretical Informatics and Applications 46(4), 615–641 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ambainis, A., Yakaryılmaz, A.: Superiority of exact quantum automata for promise problems. Inf. Process. Lett. 112(7), 289–291 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bhatia, A.S., Kumar, A.: On the power of quantum queue automata in real-time. arXiv:1810.12095 (2018)

  13. Wang, Q., Ying, M.: Quantum b∖” uchi automata. arXiv:1804.08982 (2018)

  14. Dzelme-Bērziņa, I.: Quantum finite state automata over infinite words. In: International Conference on Unconventional Computation, Springer, pp. 188–188 (2010)

  15. Mukund, M.: Finite-state automata on infinite inputs. TCS 96, 2 (1996)

    Google Scholar 

  16. Nivat, M., Perrin, D.: Automata on infinite words, vol. 192, Springer Science & Business Media (1985)

  17. Perrin, D.: Recent results on automata and infinite words. In: International Symposium on Mathematical Foundations of Computer Science, Springer, pp. 134–148 (1984)

  18. Baier, C., Bertrand, N., Größer, M.: Probabilistic automata over infinite words: expressiveness, efficiency, and decidability . arXiv:0907.4760 (2009)

  19. Giannakis, K., Papalitsas, C., Andronikos, T.: Quantum automata for infinite periodic words. In: 2015 6th International Conference on Information, Intelligence, Systems and Applications (IISA), IEEE, pp. 1–6 (2015)

  20. Dzelme-Bērziṅa, I.: Quantum finite automata and logic, P. h. D. thesis, University of Latvia Riga (2010)

  21. Bhatia, A.S., Kumar, A.: Quantifying matrix product state. Quantum Inf. Process. 17(3), 41 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Rukšane, I., Krišlauks, R., Mischenko-Slatenkova, T., Dzelme-Berzina, I., Freivalds, R., Nagele, I.: Probabilistic, frequency and quantum automata on omega-words

  23. Gruska, J.: Quantum computing, vol. 2005. McGraw-Hill, London (1999)

    Google Scholar 

  24. Moore, C., Crutchfield, J.P.: Quantum automata and quantum grammars. Theor. Comput. Sci. 237(1-2), 275–306 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Brodsky, A., Pippenger, N.: Characterizations of 1-way quantum finite automata. SIAM J. Comput. 31(5), 1456–1478 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Amandeep Singh Bhatia was supported by Maulana Azad National Fellowship (MANF), funded by Ministry of Minority Affairs, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amandeep Singh Bhatia.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatia, A.S., Kumar, A. Quantum ω-Automata over Infinite Words and Their Relationships. Int J Theor Phys 58, 878–889 (2019). https://doi.org/10.1007/s10773-018-3983-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3983-0

Keywords