Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Examining micro-level knowledge sharing discussions in online communities

  • Published:
Information Systems Frontiers Aims and scope Submit manuscript

Abstract

Online communities of practice have become a popular knowledge source for both individuals and organizations. It is important to understand how to facilitate virtual knowledge sharing in online communities. Existing studies generally focus on system design factors or motivations behind knowledge sharing behavior. In this study we aim to investigate the knowledge sharing processes in online communities and identify process patterns that are indicative of effective knowledge sharing processes. We propose a computational framework to examine individual knowledge sharing processes in online communities from a process perspective. Our empirical evaluations show that effective knowledge sharing processes have distinct structural characteristics and communication network patterns compared to unhelpful knowledge sharing processes. Our research findings have practical implications for online community practitioners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adamic, L. A., Zhang, J., Bakshy, E., & Ackerman, M. S. (2008). Knowledge sharing and Yahoo answers: everyone knows something. Proceedings of the 17th International Conference on World Wide Web—WWW ‘08, Beijing, China, pp. 665–674.

  • Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern information retrieval. New York: Addison-Wesley.

    Google Scholar 

  • Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Englewood Cliffs: Pretice-Hall.

    Google Scholar 

  • Burke, P. (1997). An identity model for network exchange. American Sociological Review, 62, 134–150.

    Article  Google Scholar 

  • Cao, Q., Duan, W., & Gan, Q. (2011). Exploring determinants of voting for the “Helpfulness” of online user reviews: a text mining approach. Decision Support Systems, 50(2), 511–521.

    Article  Google Scholar 

  • Chau, M., & Xu, J. (2012). Business intelligence in blogs: understanding consumer interactions and communities. MIS Quarterly, 36(4), 1189–1216.

    Google Scholar 

  • Chen, G. D., Wang, C. Y., & Ou, K. L. (2003). Using group communication to monitor web-based group learning. Journal of Computer Assisted Learning, 19(4), 401–415.

    Article  Google Scholar 

  • Cheng, X., Dale, C., & Liu, J. (2008). Statistics and social network of youtube videos. Proceedings of the 16th International Workshop on Quality of Service, Enschede, pp. 229–238.

  • Chiu, C. M., Hsu, M. H., & Wang, E. T. G. (2006). Understanding knowledge sharing in virtual communities: an integration of social capital and social cognitive theories. Decision Support Systems, 42(3), 1872–1888.

    Article  Google Scholar 

  • Constant, D., Sproull, L., & Kiesler, S. (1996). The kindness of strangers: the usefulness of electronic weak ties for technical advice. Organization Science, 7(2), 119–135.

    Article  Google Scholar 

  • Cook, K., & Rice, E. (2001). Exchange and power: Issues of structure and agency. In J. H. Turner (Ed.), Handbook of sociological theory (pp. 699–719). New York: Kluwer Academic Publishers.

    Google Scholar 

  • De Moor, A. (2006). Community memory activation with collaboration patterns. Proceedings of the 3rd International Community Informatics Conference (CIRN 2006), Monash Centre, Prato, Italy, pp. 1–18.

  • Faraj, S., & Johnson, S. L. (2011). Network exchange patterns in online communities. Organization Science, 22, 1464–1480.

    Article  Google Scholar 

  • Garlaschelli, D., & Loffredo, M. I. (2004). Patterns of link reciprocity in directed networks. Physical Review Letters, 93(26), 268701.

    Article  Google Scholar 

  • Goedertier, S., De Weerdt, J., Martens, D., Vanthienen, J., & Baesens, B. (2011). Process discovery in event logs: an application in the telecom industry. Applied Soft Computing, 11(2), 1697–1710.

    Article  Google Scholar 

  • Gómez, V., Kaltenbrunner, A., & López, V. (2008). Statistical analysis of the social network and discussion threads in slashdot. Proceedings of the 17th International Conference on World Wide Web (WWW), Beijing, China, pp. 645–654.

  • Hertog, P. D. (2000). Knowledge-intensive business services as co-producers of innovation. International Journal of Innovation Management, 04(04), 491–528.

    Article  Google Scholar 

  • Huan, J., Wang, W., Bandyopadhyay, D., Snoeyink, J., Prins, J., & Tropsha, A. (2004). Mining protein family specific residue packing patterns from protein structure graphs. Proceedings of the Eighth Annual International Conference on Computational Molecular Biology—RECOMB ‘04 (pp. 308–315). San Diego: ACM Press.

    Google Scholar 

  • Krishna, V., Ranga Suri, N. N. R., & Athithan, G. (2011). A comparative survey of algorithms for frequent subgraph discovery. Current Science, 100(2), 190–198.

    Google Scholar 

  • Kumar, R., Novak, J., & Tomkins, A. (2006). Structure and evolution of online social networks. In P. S. Yu, J. Han, & C. Faloutsos (Eds.), Link mining: Models, algorithms, and applications (pp. 337–357). New York: Springer.

    Google Scholar 

  • Lahiri, M., & Berger-Wolf, T. Y. (2008). Mining periodic behavior in dynamic social networks. Proceedings of Eighth IEEE International Conference on Data Mining—ICDM ‘08, Pisa, Italy, pp. 373–382.

  • Laniado, D., Tasso, R., Volkovich, Y., & Kaltenbrunner, A. (2011). When Thewikipedians talk: Network and tree structure Ofwikipedia discussion pages. Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media (ICWSM ‘11), Barcelona, Spain.

  • Lee, M. K. O., Cheung, C. M. K., Lim, K. H., & Sia, C. L. (2006). Understanding customer knowledge sharing in web-based discussion boards: an exploratory study. Internet Research, 16, 289–303.

    Article  Google Scholar 

  • Leshed, G. (2009). Silencing the Clatter: Removing Anonymity from a Corporate Online Community. In T. Davies & S. P. Gangadhara (Eds.), Online deliberation: Design, research, and practice (pp. 243–251). Stanford: CSLI Publications.

    Google Scholar 

  • Mislove, A., Marcon, M., Gummadi, K. P., Druschel, P., & Bhattacharjee, B. (2007). Measurement and analysis of online social networks. Proceedings of the 7th ACM SIGCOMM conference on Internet measurement—IMC ‘07, ACM Press, New York, New York, USA, p. 29.

  • Nolker, R. D., & Lina, Z. (2005). Social computing and weighting to identify member roles in online communities. Web intelligence, 2005. Proceedings. The 2005 IEEE/WIC/ACM International Conference on, pp. 87–93.

  • Peddibhotla, N. B., & Subramani, M. R. (2007). Contributing to public document repositories: a critical mass theory perspective. Organization Studies, 28, 327–346.

    Article  Google Scholar 

  • Preece, J. (2000). Online communities: Designing usability and supporting socialbilty.

  • Setia, P., Rajagopalan, B., Sambamurthy, V., & Calantone, R. (2012). How peripheral developers contribute to open-source software development. Information Systems Research, 23(1), 144–163.

    Article  Google Scholar 

  • Sharratt, M., & Usoro, A. (2003). Understanding knowledge-sharing in online communities of practice. Electronic Journal on Knowledge Management, 1(2), 187–196.

    Google Scholar 

  • von Hippel, E., & von Krogh, G. (2003). Open source software and the “Private-collective” innovation model: issues for organization science. Organization Science, 14, 209–223.

    Article  Google Scholar 

  • Wang, G., Liu, X., & Fan, W. (2011). A knowledge adoption model based framework for finding helpful user-generated contents in online communities. Proceedings of 30th Second International Conference on Information Systems, Shanghai, China.

  • Wang, G. A., Jiao, J., Abrahams, A. S., Fan, W., & Zhang, Z. (2013). Expertrank: a topic-aware expert finding algorithm for online knowledge communities. Decision Support Systems, 54(3), 1442–1451.

    Article  Google Scholar 

  • Wasko, M. M., & Faraj, S. (2005). Why should I share? Examining social capital and knowledge contribution in electronic networks of practice. MIS Quarterly, 29(1), 35–57.

    Google Scholar 

  • Wassermann, S., & Faust, K. (1994). Social network analysis: Methods and applications. New York: Cambridge University.

    Book  Google Scholar 

  • Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘Small-world’ networks. Nature, 393, 440–442.

    Article  Google Scholar 

  • Wenger, E., McDermott, R. A., & Snyder, W. (2002). Cultivating communities of practice: A guide to managing knowledge. Harvard Business Press.

  • Yan, X., & Han, J. (2002). Gspan: Graph-based substructure pattern mining. Proceedings of 2002 I.E. International Conference on Data Mining (ICDM), Maebashi City, Japan, pp. 721–724.

  • Yu, M. Y., Lang, K. R., & Kumar, N. (2010). Supporting better communication in academic communities of practice: an empirical study of Ais/Isworld. Communications of the Association for Information Systems, 26, 305–328.

    Google Scholar 

  • Zhang, W., & Watts, S. (2003). Knowledge adoption in online communities of practice. Systemes d’Information et Management, 9, 81–102.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G.A., Liu, X., Wang, J. et al. Examining micro-level knowledge sharing discussions in online communities. Inf Syst Front 17, 1227–1238 (2015). https://doi.org/10.1007/s10796-015-9566-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10796-015-9566-1

Keywords