Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An investigation of copper interconnect deposition bath ageing by electrochemical impedance spectroscopy

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Electrochemical impedance spectroscopy was performed on copper interconnect plating baths during deposition to study their degradation (ageing). A kinetic-based model was used to simulate the impedance scans by taking into account the organic additives in the reaction mechanism. Also, an equivalent circuit analysis was performed to characterize the deposition process in terms of resistive and capacitive components. Experimental results for two chemistries indicate that the low-frequency impedance relaxations change as the plating bath ages. Impedance diagrams calculated from the kinetic model resulted in a reasonable fit with the experimental impedance scans. In addition, the low-frequency capacitive and inductive impedance loop diameters are proposed as parameters to follow bath ageing. From these results, a monitoring method is proposed which could be applied to an industrial production line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Moffat TP, Wheeler D, Huber WH, Josell D (2001) Electrochem Solid State Lett 4:C26

    Article  CAS  Google Scholar 

  2. Koh LT, You GZ, Lim SY, Lim CY, Foo PD (2001) Microelectronics J 32:973

    Article  CAS  Google Scholar 

  3. Epelboin I, Lenoir F, Wiart R (1972) J Cryst Growth 13:417

    Article  Google Scholar 

  4. Burrows IR, Harrison JA, Thomson J (1975) J Electroanal Chem 58:241

    Article  CAS  Google Scholar 

  5. Razumney G, O’M Bockris J (1973) J Electroanal Chem 46:185

    Article  CAS  Google Scholar 

  6. Harrison JA, Thirsk HR (1971) In: Bard AJ (ed) Electroanalytical chemistry, vol 5. Marcel Dekker, New York, p 67

  7. Chassaing E, Wiart R (1984) Electrochim Acta 29:649

    Article  CAS  Google Scholar 

  8. Soares DM, Wasle S, Weil KG, Doblhofer K (2002) J Electroanal Chem 532:353

    Article  CAS  Google Scholar 

  9. Healy JP, Pletcher D, Goodenough M (1992) J Electronal Chem 338:155

    Article  CAS  Google Scholar 

  10. Gabrielli C, Moçotéguy Ph, Perrot H, Wiart R (2004) J Electroanal Chem 572:367

    Article  CAS  Google Scholar 

  11. Gabrielli C, Moçotéguy Ph, Perrot H, Nieto-Senz D, Zdunek A (2006) Electrochim Acta 51:1462

    Article  CAS  Google Scholar 

  12. Gabrielli C, Moçotéguy Ph, Perrot H, Nieto-Sanz D, Zdunek A (2007) J Electrochem Soc 154:D13

    Article  CAS  Google Scholar 

  13. (a) Moffat TP, Bonevich JE, Huber WH, Stanishevsky A, Kelly DR, Stafford GR, Josell D (2000) J Electrochem Soc 147:4524. (b) Mattson E, O’M Bockris J (1959) Trans Faraday Soc 55:1586

    Google Scholar 

  14. O’M Bockris J, Enyo M (1962) Trans Faraday Soc 58:11

    Article  Google Scholar 

  15. Brown OR, Thirsk HR (1965) Electrochim Acta 10:3

    Article  Google Scholar 

  16. Chao F, Costa M (1968) Bull Soc Chim Fr 10:4015

    Google Scholar 

  17. Rashkov ST, Vuchkov L (1981) Surf Technol 14:309

    Article  CAS  Google Scholar 

  18. Gabrielli C, Moçotéguy Ph, Perrot H, Zdunek A, Nieto-Sanz D, Clech MC (2003) Electrochem Soc Proc 2003:121

    Google Scholar 

  19. Gabrielli C, Moçotéguy PC, Perrot H, Zdunek A, Bouard P, Haddix M (2004) Electrochem Solid State Lett 7:C31

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the support of Altis Semiconductor, Corbeil-Essones, France on this project. In particular, special thanks to Christelle Mace, Eric Chabal and Anne Quennoy of the Cu ECD team at Altis for their help during the impedance measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Gabrielli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabrielli, C., Moçotéguy, P., Perrot, H. et al. An investigation of copper interconnect deposition bath ageing by electrochemical impedance spectroscopy. J Appl Electrochem 38, 457–468 (2008). https://doi.org/10.1007/s10800-007-9459-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-007-9459-1

Keywords