Abstract
Affine covariant local image features are a powerful tool for many applications, including matching and calibrating wide baseline images. Local feature extractors that use a saliency map to locate features require adaptation processes in order to extract affine covariant features. The most effective extractors make use of the second moment matrix (SMM) to iteratively estimate the affine shape of local image regions. This paper shows that the Hessian matrix can be used to estimate local affine shape in a similar fashion to the SMM. The Hessian matrix requires significantly less computation effort than the SMM, allowing more efficient affine adaptation. Experimental results indicate that using the Hessian matrix in conjunction with a feature extractor that selects features in regions with high second order gradients delivers equivalent quality correspondences in less than 17% of the processing time, compared to the same extractor using the SMM.
Similar content being viewed by others
References
Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, New York (2003)
Pollefeys, M., Van Gool, L., Vergauwen, M., Verbiest, F., Cornelis, K., Tops, J., Koch, R.: Visual modeling with a hand-held camera. Int. J. Comput. Vis. 59(3), 207–232 (2004)
Furukawa, Y., Ponce, J.: Accurate, dense, and robust multi-view stereopsis. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)
Brown, M., Lowe, D.G.: Automatic panoramic image stitching using invariant features. Int. J. Comput. Vis. 74(1), 59–73 (2007)
Carbonetto, P., Dorkó, G., Schmid, C., Kück, H., de Freitas, N.: Learning to recognize objects with little supervision. Int. J. Comput. Vis. 77(1), 219–237 (2008)
Snavely, N., Seitz, S., Szeliski, R.: Modeling the world from Internet photo collections. Int. J. Comput. Vis. 80(2), 189–210 (2008)
Fookes, C., Denman, S., Lakemond, R., Ryan, D., Sridharan, S., Piccardi, M.: Semi-supervised intelligent surveillance system for secure environments. In: IEEE International Symposium on Industrial Electronics (ISIE), pp. 2815–2820 (2010)
Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: a survey. Found. Trends Comput. Graph. Vis. 3(3), 177–280 (2008)
Kadir, T., Zisserman, A., Brady, J.M.: An affine invariant salient region detector. In: Proc. European Conference on Computer Vision, pp. 228–241 (2004)
Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Van Gool, L.: A comparison of affine region detectors. Int. J. Comput. Vis. 65(1-2), 43–72 (2005)
Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: Proc. British Machine Vision Conference, vol. 1, pp. 384–393 (2002)
Moreels, P., Perona, P.: Evaluation of features detectors and descriptors based on 3d objects. Int. J. Comput. Vis. 73(3), 263–284 (2007)
Bay, H., Tuytelaars, T., Van Gool, L.: Surf: Speeded up robust features. In: Proc. European Conference on Computer Vision, pp. 404–417 (2006)
Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Proc. European Conference on Computer Vision. Lecture Notes in Computer Science, vol. 3951, pp. 430–443. Springer, Berlin (2006)
Harris, C., Stephens, M.: A combined corner and edge detector. In: Proc. Alvey Vision Conference, pp. 189–192 (1988)
Beaudet, P.R.: Rotationally invariant image operators. In: Proc. International Joint Conference on Pattern Recognition, Kyoto, Japan, pp. 579–583 (1978)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
Lindeberg, T.: Scale-Space Theory in Computer Vision, 1st edn. Kluwer Academic, Boston (1994)
Lindeberg, T.: Feature detection with automatic scale selection. Int. J. Comput. Vis. 30(2), 77–116 (1998)
Lowe, D.G.: Object recognition from local scale-invariant features. In: Proc. International Conference on Computer Vision, Corfu, Greece, pp. 1150–1157 (1999)
Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. Int. J. Comput. Vis. 60, 63–86 (2004)
Lakemond, R., McKinnon, D.N.R., Fookes, C., Sridharan, S.: A feature clustering algorithm for scale-space analysis of image structures. In: Proc. International Conference on Signal Processing and Communication Systems, pp. 186–192 (2007)
Lakemond, R.: Multiple camera management using wide baseline matching. Thesis (2010)
Lindeberg, T., Gårding, J.: Shape-adapted smoothing in estimation of 3-d depth cues from affine distortions of local 2-d brightness structure. In: Proc. European Conference on Computer Vision. Lecture Notes in Computer Science, vol. 800, pp. 389–400. Springer, Berlin (1994)
Baumberg, A.: Reliable feature matching across widely separated views. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 774–781 (2000)
Tuytelaars, T., Van Gool, L., D’haene, L., Koch, R.: Matching of affinely invariant regions for visual servoing. In: Proc. IEEE International Conference on Robotics and Automation, vol. 2, pp. 1601–1606 (1999)
Tuytelaars, T., Van Gool, L.: Wide baseline stereo matching based on local, affinely invariant regions. In: Proc. British Machine Vision Conference, Bristol, pp. 412–425 (2000)
van Gool, L., Tuytelaars, T., Turina, A.: Local features for image retrieval. In: Veltkamp, R.C., Burkhardt, H., Kriegel, H.-P. (eds.) State-Of-The-Art in Content-Based Image and Video Retrieval, pp. 21–41. Kluwer Academic, Dordrecht (2001)
Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)
Lakemond, R., Fookes, C., Sridharan, S.: Affine adaptation of local image features using the Hessian matrix. In: Proc. IEEE conference on Advanced Video and Signal Based Surveillance, Genoa, Italy, pp. 496–501 (2009)
Yuen, K.: Bayesian Methods for Structural Dynamics and Civil Engineering. Wiley, Singapore (2010)
Deriche, R.: Recursively implementing the Gaussian and its derivatives. Technical report, INRIA (April 1993)
Young, I.T., van Vliet, L.J.: Recursive implementation of the Gaussian filter. Signal Process. 44(2), 139–151 (1995)
Lakemond, R., Fookes, C., Sridharan, S.: Dense correspondence extraction in difficult uncalibrated scenarios. In: Proc. Digital Image Computing: Techniques and Applications, Melbourne, Australia, pp. 53–60. IEEE Computer Society Conference Publishing Services, New York (2009)
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)
Longuet-Higgins, H.C.: A computer algorithm for reconstructing a scene from two projections. In: Readings in Computer Vision: Issues, Problems, Principles, and Paradigms, p. 61. Morgan Kaufmann, San Francisco (1987)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lakemond, R., Sridharan, S. & Fookes, C. Hessian-Based Affine Adaptation of Salient Local Image Features. J Math Imaging Vis 44, 150–167 (2012). https://doi.org/10.1007/s10851-011-0317-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-011-0317-8