Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Semidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We consider relaxations for nonconvex quadratically constrained quadratic programming (QCQP) based on semidefinite programming (SDP) and the reformulation-linearization technique (RLT). From a theoretical standpoint we show that the addition of a semidefiniteness condition removes a substantial portion of the feasible region corresponding to product terms in the RLT relaxation. On test problems we show that the use of SDP and RLT constraints together can produce bounds that are substantially better than either technique used alone. For highly symmetric problems we also consider the effect of symmetry-breaking based on tightened bounds on variables and/or order constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anstreicher, K.M., Burer, S.: Computable representations for convex hulls of low-dimensional quadratic forms. Working paper, Deptartment of Management Sciences, University of Iowa (2007) http://www.optimization-online.org/DB_HTML/2007/02/1586.html

  2. Burer, S.: On the copositive representation of binary and continuous nonconvex quadratic programs. Math. Prog. (to appear)

  3. Burer S., Vandenbussche D.: A finite branch–and–bound algorithm for nonconvex quadratic programming via semidefinite relaxations. Math. Prog. 113, 259–282 (2008)

    Article  Google Scholar 

  4. de Angelis P.L., Pardalos P.M., Toraldo G. : Quadratic programming with box constraints. In: Bomze, I.M. et al. (eds) Developments in Global Optimization, pp. 73–95. Kluwer, Dordrecht (1997)

    Google Scholar 

  5. Kim S., Kojima M.: Second order cone programming relaxation of nonconvex quadratic optimization problems. Optim. Methods Softw. 15, 201–204 (2001)

    Article  Google Scholar 

  6. Markót M.C., Csendes T.: A new verified optimization technique for the “packing circles in a unit square” problems. SIAM J. Optim. 16, 193–219 (2005)

    Article  Google Scholar 

  7. Sahinidis N.V.: BARON: a general purpose global optimization software package. J. Glob. Optim. 8, 201–205 (1996)

    Article  Google Scholar 

  8. Sherali H.D., Adams W.P.: A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems. Kluwer, Dordrecht (1998)

    Google Scholar 

  9. Sherali H.D., Fraticelli B.M.P.: Enhancing RLT relaxations via a new class of semidefinite cuts. J. Glob. Optim. 22, 233–261 (2002)

    Article  Google Scholar 

  10. Sherali H.D., Tuncbilek C.H.: A reformulation-convexification approach for solving nonconvex quadratic programming problems. J. Glob. Optim. 7, 1–31 (1995)

    Article  Google Scholar 

  11. So A.M.-C., Ye Y.: Theory of semidefinite programming for sensor network localization. Math. Prog. 109, 367–384 (2007)

    Article  Google Scholar 

  12. Sturm J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11–12, 625–653 (1999)

    Article  Google Scholar 

  13. Szabó P.G., Markót M.C., Csendes T.: Global optimization in geometry—circle packing into the square. In: Audet, C., Hansen, P., Savard, G. (eds) Essays and Surveys in Global Optimization, pp. 233–266. Kluwer, Dordrecht (2005)

    Chapter  Google Scholar 

  14. Vandenberghe L., Boyd S.: Semidefinite programming. SIAM Rev. 38, 49–95 (1996)

    Article  Google Scholar 

  15. Vandenbussche D., Nemhauser G.: A branch-and-cut algorithm for nonconvex quadratic programming with box constraints. Math. Prog. 102, 559–575 (2005)

    Article  Google Scholar 

  16. Wolkowicz, H., Saigal, R., Vandenberghe, L. (eds.): Handbook of Semidefinite Programming. Kluwer, Dordrecht (2000)

    Google Scholar 

  17. Ye Y.: Approximating quadratic programming with bound and quadratic constraints. Math. Prog. 84, 219–226 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt M. Anstreicher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anstreicher, K.M. Semidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming. J Glob Optim 43, 471–484 (2009). https://doi.org/10.1007/s10898-008-9372-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-008-9372-0

Keywords

AMS Subject Classifications