Abstract
We propose a variant of Korpelevich’s method for solving variational inequality problems with operators in Banach spaces. A full convergence analysis of the method is presented under reasonable assumptions on the problem data.
Similar content being viewed by others
References
Armijo L.: Minimization of functions having continuous partial derivatives. Pac. J. Math. 16, 1–3 (1966)
Alber Y.I.: Metric and generalized projection operators in Banach spaces: properties and applications, Theory and applications of nonlinear operators of accretive and monotone type. Lect. Notes Pure Appl. Math. 178, 15–50 (1996)
Alber Y.I.: On average convergence of the iterative projection methods. Taiwan. J. Math. 6, 323–341 (2002)
Auslender A., Teboulle M.: Interior projection-like methods for monotone variational inequalities. Math. Program. 104, 39–68 (2005)
Balaj M., O’Regan D.: A generalized quasi-equilibrium problem. In: Pardalos, P.M., Rassias, T.M., Kahn, A.A. (eds) Nonlinear Analysis and Variational Problems, pp. 201–210. Springer, Berlin (2010)
Bao T.Q., Khanh P.Q.: A projection-type algorithm for pseudomonotone nonlipschitzian multivalued variational inequalities. Nonconvex Optim. Appl. 77, 113–129 (2005)
Bao T.Q., Khanh P.Q.: Some algorithms for solving mixed variational inequalities. Acta Math. Vietnam. 31, 83–103 (2006)
Bertsekas D.P., Tsitsiklis J.N.: Parallel and Distributed Computation: Numerical Methods. Prentice Hall, New Jersey (1989)
Breton M., Zaccour G., Zahaf M.: A differential game of joint implementation of environmental projects. Automatica 41, 1737–1749 (2005)
Butnariu D., Iusem A.N.: Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization. Kluwer, Dordrecht (2000)
Butnariu, D., Resmerita, E.: Bregman distances, totally convex functions and a method for solving operator equations in Banach spaces. Abstract and Applied Analysis (2006) Art. ID 84919
Cioranescu I.: Geometry of Banach Spaces, Duality Mappings, and Nonlinear Problems. Kluwer, Dordrecht (1990)
Facchinei F., Fischer A., Piccialli V.: On generalized Nash games and variational inequalities. Oper. Res. Lett. 35, 159–164 (2007)
Fang S.-C.: An iterative method for generalized complementarity problems. IEEE Trans. Automat. Contr. 25, 1225–1227 (1980)
Golshtein E.G., Tretyakov N.V.: Modified Lagrangians and Monotone Maps in Optimization. Wiley, New York (1996)
He B.S.: A new method for a class of variational inequalities. Math. Program. 66, 137–144 (1994)
Iiduka H., Takahashi W.: Weak convergence of a projection algorithm for variational inequalities in a Banach space. J. Math. Anal. Appl. 339, 668–679 (2008)
Iusem A.N.: An iterative algorithm for the variational inequality problem. Comput. Appl. Math. 13, 103–114 (1994)
Iusem A.N., Gárciga Otero R.: Inexact versions of proximal point and augmented Lagrangian algorithms in Banach spaces. Numer. Funct. Anal. Optim. 22, 609–640 (2001)
Iusem A.N., Lucambio Pérez L.R.: An extragradient-type algorithm for non-smooth variational inequalities. Optimization 48, 309–332 (2000)
Iusem A.N., Svaiter B.F.: A variant of Korpelevich’s method for variational inequalities with a new search strategy. Optimization 42, 309–321 (1997)
Jørgensen S., Zaccour G.: Developments in differential game theory and numerical methods: economic and management applications. Comput. Manage. Sci. 4, 159–181 (2007)
Khobotov E.N.: Modifications of the extragradient method for solving variational inequalities and certain optimization problems. USSR Comput. Math. Math. Phys. 27, 120–127 (1987)
Kinderlehrer D., Stampacchia G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980)
Konnov I.V.: Combined relaxation methods for finding equilibrium points and solving related problems. Russ. Math. 37, 34–51 (1993)
Konnov I.V.: On combined relaxation methods’ convergence rates. Russ. Math. 37, 89–92 (1993)
Konnov I.V.: Combined Relaxation Methods for Variational Inequalities. Springer, Berlin (2001)
Korpelevich G.M.: The extragradient method for finding saddle points and other problems. Ekonomika i Matematcheskie Metody 12, 747–756 (1976)
Lin L.J., Yang M.F., Ansari Q.H., Kassay G.: Existence results for Stampacchia and Minty type implicit variational inequalities with multivalued maps. Nonlinear Anal. Theory Methods Appl. 61, 1–19 (2005)
Marcotte P.: Application of Khobotov’s algorithm to variational inequalities and network equilibrium problems. Inf. Syst. Oper. Res. 29, 258–270 (1991)
Nagurney A.: Variational inequalities. In: Floudas, C.A., Pardalos, P.M. (eds) Encyclopaedia of Optimization, Part 22, pp. 3989–3994. Springer, Berlin (2009)
Nemirovskii A.S.: Effective iterative methods for solving equations with monotone operators. Ekonomika i Mathematcheskie Metody 17, 344–359 (1981)
Nemirovskii A.S.: A prox-method with rate of convergence O(1/t) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM J. Contr. Optim. 15, 229–251 (2004)
Robinson S.M., Lu S.: Solution continuity in variational conditions. J. Global Optim. 40, 405–415 (2008)
Rosen J.B.: Existence and uniqueness of equilibrium points for concave n-person games. Econometrica 33, 520–534 (1965)
Shor N.Z.: New development trends in nonsmooth optimization methods. Cybernetics 6, 87–91 (1967)
Solodov M.V., Svaiter B.F.: A new projection method for variational inequality problems. SIAM J. Contr. Optim. 37, 765–776 (1999)
Solodov M.V., Tseng P.: Modified projection-type methods for monotone variational inequalities. SIAM J. Contr. Optim. 34, 1814–1830 (1996)
Takahashi W.: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama (2000)
Williams R.J.: Sufficient conditions for Nash equilibria in N-person games over reflexive Banach spaces. J. Optim. Theory Appl. 30, 383–394 (1980)
Zeidler E.: Nonlinear Functional Analysis and its Applications I. Springer, New York (1985)
Zhu D.L., Marcotte P.: Convergence properties of feasible descent methods for solving variational inequalities in Banach spaces. Comput. Optim. Appl. 10, 35–49 (1998)
Zukhovitskii R.A., Poliak R.A., Primak M.E.: Two methods of search for equilibrium points of n-person concave games. Soviet Math. Doklady 10, 279–282 (1969)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Iusem, A.N., Nasri, M. Korpelevich’s method for variational inequality problems in Banach spaces. J Glob Optim 50, 59–76 (2011). https://doi.org/10.1007/s10898-010-9613-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-010-9613-x