Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Performance of global random search algorithms for large dimensions

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We investigate the rate of convergence of general global random search (GRS) algorithms. We show that if the dimension of the feasible domain is large then it is impossible to give any guarantee that the global minimizer is found by a general GRS algorithm with reasonable accuracy. We then study precision of statistical estimates of the global minimum in the case of large dimensions. We show that these estimates also suffer the curse of dimensionality. Finally, we demonstrate that the use of quasi-random points in place of the random ones does not give any visible advantage in large dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Auger, A., Hansen, N.: Theory of evolution strategies: a new perspective. In: Auger, A., Doerr, B. (eds.) Theory of Randomized Search Heuristics: Foundations and Recent Developments, pp. 289–325. World Scientific Publishing, Singapore (2010)

    Google Scholar 

  2. Cooke, P.: Optimal linear estimation of bounds of random variables. Biometrika 67(1), 257–258 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  3. De Haan, L.: Estimation of the minimum of a function using order statistics. J. Am. Stat. Assoc. 76(374), 467–469 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  4. De Haan, L., Peng, L.: Comparison of tail index estimators. Stat. Neerl. 52(1), 60–70 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dette, H., Pepelyshev, A., Zhigljavsky, A.: Optimal designs in regression with correlated errors. Ann. Stat. 44(1), 113–152 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Nevzorov, V.B.: Records: mathematical theory. American Mathematical Soc. (2001)

  7. Niederreiter, H.: Random number generation and quasi-monte carlo methods, cbms-nsf reg. In: Conference of series applied mathematics, vol. 63 (1992)

  8. Pintér, Jn: Convergence properties of stochastic optimization procedures. Optimization 15(3), 405–427 (1984)

    MathSciNet  MATH  Google Scholar 

  9. Solis, F.J., Wets, R.J.B.: Minimization by random search techniques. Math. Oper. Res. 6(1), 19–30 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhigljavsky, A.: Monte-Carlo methods in global optimization, PhD thesis. Leningrad University (1981)

  11. Zhigljavsky, A.: Mathematical Theory of Global Random Search. Leningrad University Press, Leningrad (1985). (in Russian)

    Google Scholar 

  12. Zhigljavsky, A.: Branch and probability bound methods for global optimization. Informatica 1(1), 125–140 (1990)

    MathSciNet  MATH  Google Scholar 

  13. Zhigljavsky, A.: Theory of Global Random Search. Kluwer Academic Publishers, Boston (1991)

    Book  Google Scholar 

  14. Zhigljavsky, A., Hamilton, E.: Stopping rules in k-adaptive global random search algorithms. J. Glob. Optim. 48(1), 87–97 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhigljavsky, A., Žilinskas, A.: Methods of Seeking a Global Extremum. Nauka, Moscow (1991)

    Google Scholar 

  16. Zhigljavsky, A., Žilinskas, A.: Stochastic Global Optimization. Springer, New York (2008)

    MATH  Google Scholar 

  17. Zhigljavsky, A.A.: Semiparametric statistical inference in global random search. Acta Applicandae Mathematica 33(1), 69–88 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Žilinskas, A.: A statistical model-based algorithm for black-box multi-objective optimisation. Int. J. Syst. Sci. 45(1), 82–92 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Žilinskas, A., Zhigljavsky, A.: Branch and probability bound methods in multi-objective optimization. Optim. Lett. 10(2), 341–353 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of the first author was partially supported by the SPbSU Project No. 6.38.435.2015 and the RFFI Project No. 17-01-00161. The work of the second author was supported by the Russian Science Foundation, Project No. 15-11-30022 ‘Global optimization, supercomputing computations, and applications’. The work of the third author was supported by the Research Council of Lithuania under Grant No. MIP-051/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Pepelyshev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pepelyshev, A., Zhigljavsky, A. & Žilinskas, A. Performance of global random search algorithms for large dimensions. J Glob Optim 71, 57–71 (2018). https://doi.org/10.1007/s10898-017-0535-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-017-0535-8

Keywords