Abstract
Telemedicine involves the use of advanced and reliable communication techniques to deliver biomedical signals over long distances. In such systems, biomedical information is transmitted using wireline or wireless communication systems. Mobile telemedicine is an improved form of telemedicine, in which advanced wireless communication systems are used to deliver the biomedical signals of patients at any place and any time. Mobile telemedicine employs advanced concepts and techniques from the fields of electrical engineering, computer science, biomedical engineering, and medicine to overcome the restrictions involved in conventional telemedicine and realize an improvement in the quality of service of medicine. In this paper, we study several mobile telemedicine systems, and it is important to gain a good understanding of mobile telemedicine systems because in the further, such systems are expected to become ubiquitous for the delivery of biomedical signals for medicine.
Similar content being viewed by others
References
Lin, C. F., Chen, J. Y., Shiu, R. H., and Chang, S. H., A Ka band WCDMA-based LEO transport architecture in mobile telemedicine. In: Martinez, L., and Gomez, C. (Eds.), Telemedicine in the 21st Century (pp. 187–201). USA: Nova Science Publishers, 2008.
Istepanian, R. S. H., Laxminarayan, S.,and Pattichis, C. S. (Eds.), MHealth: Emerging mobile health systems. New York: Springer, 2006.
Pattichis, C. S., Kyriacou, E., Voskarides, S., Pattichis, M. S., and Istepanian, R., Wireless telemedicine systems: An overview. IEEE Antennas Propag. Mag. 44:143–153, 2002.
Kyriacou, E., Pattichis, M. S., Pattichis, C. S., Panayides, A., and Pitsillides, A., m-Health e-Emergency systems: Current status and future directions. IEEE Antennas Propag. Mag. 49(1):216–231, 2007.
Rashvand, H. F., Salcedo, V. T., Sanchez, E. M., and Iliescu, D., Ubiquitous wireless telemedicine. IET Commun. 2(2):237–254, 2008.
Lin, C. F., and Lee, H. W., Wireless multimedia communication toward mobile telemedicine. Proceedings of the 9th WSEAS International Conference on Applied Informatics and Communications, 232–237, 2009.
Cabral, J. E., and Kim, Y., Multimedia systems for telemedicine and their communications requirement. IEEE Commun. Mag. 34:20–27, 1996.
Murakami, H., Shimizu, K., Yamamoto, K., Mikami, T., Hoshimiya, N., and Kondo, K., Telemedicine using mobile satellite communication. IEEE Trans. Biomed. Eng. 41:488–497, 1994.
Anogianakis, G., Maglavera, S., and Pomportsis, A., Relief for maritime medical emergencies through telematics. IEEE Trans. Inf. Technol. Biomed. 254–260, 1998.
McDermott, W. R., Tri, J., Mitchell, M. P., Levens, S. P., Wondrow, M. A., Huie, L. M., Khandheria, B. K., Gilbert, B. K., and Foundation Ma., Optimization of wide-area AlM and local-A rea efhernet/FDDI network configurations for high-speed telemedicine communications employing NASA’s ACTS. IEEE Netw. 30–38, 1999.
Hwang, S. C., and Lee, M. H., A WEB-based TelePACS using an asymmetric satellite system. IEEE Trans. Inf. Technol. Biomed. 212-215, 2000.
Pierucci, L., and DelRe E. E., An interactive multimedia satellite telemedicine service. IEEE Multimed. 76–83, 2000.
Italsat Satellite Undergoes Tests in Toulouse, France. Space News 8–14, 1994.
Lin, C. F., and Chang, K. T., A power assignment mechanism in Ka band OFDM-based multi-satellites mobile telemedicine. J. Med. Biol. Eng. 28(1):17–22, 2008.
Pavlopoulos, S., Kyriacou, E., Berler, A., Dembeyiotis, S., and Koutsouris, D., A novel emergency telemedicine system based on wireless communication technology—AMBULANCE. IEEE Trans. Inf. Technol. Biomed. 2(4):261–267, 1998.
Hung, K., and Zhang, Y. T., Implementation of a WAP-based telemedicine system for patient monitoring. IEEE Trans. Inf. Technol. Biomed. 7(2):101–107, 2003.
Salvador, C. H., Carrasco, M. P., González, M. A., Carrero, A. M., Montes, J. M., Martín, L. S., Cavero, M. A., Lozano, I. F., and Monteagudo, J. L., Airmed-cardio: A GSM and internet services-based system for out-of-hospital follow-up of cardiac patients. IEEE Trans. Inf. Technol. Biomed. 9(1):73–85, 2005.
Chu, Y., and Ganz, A., A mobile teletrauma system using 3G networks. IEEE Trans. Inf. Technol. Biomed. 452–456, 2004.
Gállego, J. R., Ángela, H. S., Canales, M., Javier, J., Antonio, V., and Julián, F. N., Performance analysis of multiplexed medical data transmission for mobile emergency care over the UMTS channel. IEEE Trans. Inf. Technol. Biomed. 13-22, 2005.
Lin, C. F., Chang, W. T., Lee, H. W., and Hung, S. I., Downlink power control in multi-code CDMA mobile medicine system. Med. Biol. Eng. Comput. 44:437–444, 2006.
Niyato, D., Hossain, E., and Trlabsd, J. D., IEEE 802.16/WiMAX-based broadband wireless access and its application for telemedicine/E-health services. IEEE Wireless Communications 72–83, 2007.
Lee, R. G., Chen, K. C., Hsiao, C. C., and Tseng, C. L., A mobile care system with alert mechanism. IEEE Trans. Inf. Technol. Biomed. 11(5):507–517, 2007.
Lee, R. G., Hsiao, C. C., Chen, C. C., and Liu, M. H. A mobile-care system integrated with Bluetooth blood pressure and pulse monitor, and cellular phone. IEICE Trans. Inf. Syst. 1702–1711, 2006.
Rasid, M. F. A., and Woodward, B., Bluetooth telemedicine processor for multichannel biomedical signal transmission via mobile cellular networks. IEEE Trans. Inf. Technol. Biomed. 9(1):35–43, 2005.
Mundt, C. W., Montgomery, K. N., Udoh, U. E., Barker, V. N., Thonier, G. C., Tellier, A. M., Ricks, R. D., Darling, R. B., Cagle, Y. D., Cabrol, N. A., Ruoss, S. J., Swain, J. L., Hines, J. W., and Kovacs, G. T. A. A., Multiparameter wearable physiologic monitoring system for space and terrestrial application. IEEE Trans. Inf. Technol. Biomed. 9(3):382–391, 2005.
Baker, S., and Hoglund, D., Medical-grade, mission-critical wireless networks. IEEE Eng. Med. Biol. Mag. 86–95, 2008.
Lin, C. F., Hung, S. I., and Chiang, I. H., 802.11n WLAN transmission scheme for wireless telemedicine applications. Proc. Inst. Mech. Eng., H J. Eng. Med., 2010 (in press).
Lin, C. F., and Li, C. Y., A DS UWB transmission system for wireless telemedicine. WSEAS Trans. Syst. 578–588, 2008.
Namli, T., Aluc, G., and Dogac, A., An interoperability test framework for HL7-based systems. IEEE Trans. Inf. Technol. Biomed. 13(3):389–399, 2009.
ebXML Messaging Services Profile. Available: http://www.hl7.org/v3ballot/html/infrastructure/transport.transportebxml.htm, 2009.
Web Services Profile. Available: http://www.hl7.org/v3ballot2009jan/html/welcome/environment/index.htm, 2009.
Minimal Lower Layer Protocol Profile. Available: http://www.hl7.org/v3ballot/html/infrasturcture/transport/transportmllp.htm, 2009.
Lin, C. F., Chung, C. H., and Lin, J. H., A chaos-based visual encryption mechanism for clinical EEG signals. Med. Biol. Eng. Comput. 47(7):757–762, 2009.
Lin, C. F., Chung, C. H., Chen, Z. L., Song, C. J., and Wang, Z. X., A chaos-based unequal encryption mechanism in wireless telemedicine with error decryption. WSEAS Trans. Syst. 49–55, 2008.
Lin, C. F., Chang, W. T., and Li, C. Y., A chaos-based visual encryption mechanism in JPEG2000 medical images. J. Med. Biol. Eng. 27(3):144–149, 2007.
Lin, C. F., Yeh, S. W., Chien, Y. Y., Peng, T. I., Wang, J. H., and Chang, S. H., A HHT-based time frequency analysis scheme in clinical alcoholic EEG signals. WSEAS Transactions on Biology and Biomedicine 5(10):249–260, 2008.
Lin, C. F., Yeh, S. W., Chang, S. H., Peng, T. I., and Chien, Y. Y., An HHT-based time-frequency scheme for analyzing the EEG signals of clinical alcoholics medical information: Systems design, computerization, and applications. USA: Nova Science Publishers, 2010 (in press).
Acknowledgement
The authors acknowledge the support of the Teacher Research Project of National Taiwan Ocean University 99b60201, National Taiwan Ocean University, Center for Marine Bioscience and Biotechnology, the grant from the National Science Council of Taiwan NSC 93-2218-e-019-024, and the valuable comments of the reviewers.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lin, CF. Mobile Telemedicine: A Survey Study. J Med Syst 36, 511–520 (2012). https://doi.org/10.1007/s10916-010-9496-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10916-010-9496-x