Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Integrated PK-PD and agent-based modeling in oncology

  • Review Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Mathematical modeling has become a valuable tool that strives to complement conventional biomedical research modalities in order to predict experimental outcome, generate new medical hypotheses, and optimize clinical therapies. Two specific approaches, pharmacokinetic-pharmacodynamic (PK-PD) modeling, and agent-based modeling (ABM), have been widely applied in cancer research. While they have made important contributions on their own (e.g., PK-PD in examining chemotherapy drug efficacy and resistance, and ABM in describing and predicting tumor growth and metastasis), only a few groups have started to combine both approaches together in an effort to gain more insights into the details of drug dynamics and the resulting impact on tumor growth. In this review, we focus our discussion on some of the most recent modeling studies building on a combined PK-PD and ABM approach that have generated experimentally testable hypotheses. Some future directions are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lowengrub JS, Frieboes HB, Jin F, Chuang YL, Li X, Macklin P, Wise SM, Cristini V (2010) Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23(1):R1–R91. doi:10.1088/0951-7715/23/1/r01

    Article  PubMed Central  PubMed  Google Scholar 

  2. Di Ventura B, Lemerle C, Michalodimitrakis K, Serrano L (2006) From in vivo to in silico biology and back. Nature 443(7111):527–533. doi:10.1038/nature05127

    Article  PubMed  Google Scholar 

  3. Marx V (2013) Biology: the big challenges of big data. Nature 498(7453):255–260. doi:10.1038/498255a

    Article  CAS  PubMed  Google Scholar 

  4. Wang Z, Deisboeck TS (2014) Mathematical modeling in cancer drug discovery. Drug Discov Today 19(2):145–150. doi:10.1016/j.drudis.2013.06.015

    Article  PubMed  Google Scholar 

  5. Ballesta A, Clairambault J, Dulong S, Levi F (2011) Theoretical optimization of Irinotecan-based anticancer strategies in the case of drug-induced efflux. Appl Math Lett 24(7):1251–1256. doi:10.1016/j.aml.2011.02.017

    Article  Google Scholar 

  6. Wong H, Choo EF, Alicke B, Ding X, La H, McNamara E, Theil FP, Tibbitts J, Friedman LS, Hop CE, Gould SE (2012) Antitumor activity of targeted and cytotoxic agents in murine subcutaneous tumor models correlates with clinical response. Clin Cancer Res 18(14):3846–3855. doi:10.1158/1078-0432.ccr-12-0738

    Article  CAS  PubMed  Google Scholar 

  7. Wang S, Guo P, Wang X, Zhou Q, Gallo JM (2008) Preclinical pharmacokinetic/pharmacodynamic models of gefitinib and the design of equivalent dosing regimens in EGFR wild-type and mutant tumor models. Mol Cancer Ther 7(2):407–417. doi:10.1158/1535-7163.mct-07-2070

    Article  PubMed  Google Scholar 

  8. Walker DC, Southgate J (2009) The virtual cell—a candidate co-ordinator for ‘middle-out’ modelling of biological systems. Brief Bioinform 10(4):450–461

    Article  CAS  PubMed  Google Scholar 

  9. Byrne H, Drasdo D (2009) Individual-based and continuum models of growing cell populations: a comparison. J Math Biol 58(4–5):657–687. doi:10.1007/s00285-008-0212-0

    Article  PubMed  Google Scholar 

  10. Wang Z, Birch CM, Sagotsky J, Deisboeck TS (2009) Cross-scale, cross-pathway evaluation using an agent-based non-small cell lung cancer model. Bioinformatics (Oxford, England) 25(18):2389–2396. doi:10.1093/bioinformatics/btp416

    Article  CAS  Google Scholar 

  11. Gatenby RA, Smallbone K, Maini PK, Rose F, Averill J, Nagle RB, Worrall L, Gillies RJ (2007) Cellular adaptations to hypoxia and acidosis during somatic evolution of breast cancer. Br J Cancer 97(5):646–653. doi:10.1038/sj.bjc.6603922

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Enderling H, Anderson AR, Chaplain MA, Beheshti A, Hlatky L, Hahnfeldt P (2009) Paradoxical dependencies of tumor dormancy and progression on basic cell kinetics. Cancer Res 69(22):8814–8821. doi:10.1158/0008-5472.CAN-09-2115

    Article  CAS  PubMed  Google Scholar 

  13. Wang Z, Zhang L, Sagotsky J, Deisboeck TS (2007) Simulating non-small cell lung cancer with a multiscale agent-based model. Theor Biol Med Model 4:50

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Rejniak KA, Anderson AR (2011) Hybrid models of tumor growth. Wiley interdisciplinary reviews. Syst Biol Med 3(1):115–125. doi:10.1002/wsbm.102

    CAS  Google Scholar 

  15. Anderson AR, Chaplain MA (1998) Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull Math Biol 60(5):857–899. doi:10.1006/bulm.1998.0042

    Article  CAS  PubMed  Google Scholar 

  16. Schnell S, Grima R, Maini PK (2007) Multiscale modeling in biology—New insights into cancer illustrate how mathematical tools are enhancing the understanding of life from the smallest scale to the grandest. Am Sci 95(2):134–142

    Article  Google Scholar 

  17. Deisboeck TS, Wang Z, Macklin P, Cristini V (2011) Multiscale cancer modeling. Annu Rev Biomed Eng 13:127–155. doi:10.1146/annurev-bioeng-071910-124729

    Article  CAS  PubMed  Google Scholar 

  18. Cristini V, Lowengrub J (2010) Multiscale modeling of cancer: an integrated experimental and mathematical modeling approach. Cambridge University Press, Cambridge

    Book  Google Scholar 

  19. Anderson AR, Chaplain MA, Rejniak KA (2007) Single-cell-based models in biology and medicine. Mathematics and biosciences in interaction. Springer, Basel

    Book  Google Scholar 

  20. Koch G, Walz A, Lahu G, Schropp J (2009) Modeling of tumor growth and anticancer effects of combination therapy. J Pharmacokinet Pharmacodyn 36(2):179–197. doi:10.1007/s10928-009-9117-9

    Article  CAS  PubMed  Google Scholar 

  21. Rocchetti M, Del Bene F, Germani M, Fiorentini F, Poggesi I, Pesenti E, Magni P, De Nicolao G (2009) Testing additivity of anticancer agents in pre-clinical studies: a PK/PD modelling approach. Eur J Cancer (Oxford, England : 1990) 45(18):3336–3346. doi:10.1016/j.ejca.2009.09.025

    Article  CAS  Google Scholar 

  22. Bissell MJ, Radisky D (2001) Putting tumours in context. Nat Rev Cancer 1(1):46–54. doi:10.1038/35094059

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Jain RK (1990) Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors. Cancer Res 50(3 Suppl):814s–819s

    CAS  PubMed  Google Scholar 

  24. Enderling H, Hlatky L, Hahnfeldt P (2009) Migration rules: tumours are conglomerates of self-metastases. Br J Cancer 100(12):1917–1925. doi:10.1038/sj.bjc.6605071

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Frieboes HB, Jin F, Chuang YL, Wise SM, Lowengrub JS, Cristini V (2010) Three-dimensional multispecies nonlinear tumor growth-II: tumor invasion and angiogenesis. J Theor Biol 264(4):1254–1278. doi:10.1016/j.jtbi.2010.02.036

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Gatenby RA, Silva AS, Gillies RJ, Frieden BR (2009) Adaptive therapy. Cancer Res 69(11):4894–4903

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Gerlee P, Anderson AR (2009) Evolution of cell motility in an individual-based model of tumour growth. J Theor Biol 259(1):67–83. doi:10.1016/j.jtbi.2009.03.005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Macklin P, Edgerton ME, Thompson AM, Cristini V (2012) Patient-calibrated agent-based modelling of ductal carcinoma in situ (DCIS): from microscopic measurements to macroscopic predictions of clinical progression. J Theor Biol 301:122–140. doi:10.1016/j.jtbi.2012.02.002

    Article  PubMed Central  PubMed  Google Scholar 

  29. Powathil GG, Gordon KE, Hill LA, Chaplain MA (2012) Modelling the effects of cell-cycle heterogeneity on the response of a solid tumour to chemotherapy: biological insights from a hybrid multiscale cellular automaton model. J Theor Biol 308:1–19. doi:10.1016/j.jtbi.2012.05.015

    Article  CAS  PubMed  Google Scholar 

  30. Silva AS, Gatenby RA (2010) A theoretical quantitative model for evolution of cancer chemotherapy resistance. Biol Direct 5:25. doi:10.1186/1745-6150-5-25

    Article  PubMed Central  PubMed  Google Scholar 

  31. Smallbone K, Gatenby RA, Gillies RJ, Maini PK, Gavaghan DJ (2007) Metabolic changes during carcinogenesis: potential impact on invasiveness. J Theor Biol 244(4):703–713. doi:10.1016/j.jtbi.2006.09.010

    Article  CAS  PubMed  Google Scholar 

  32. Wang Z, Birch CM, Deisboeck TS (2008) Cross-scale sensitivity analysis of a non-small cell lung cancer model: linking molecular signaling properties to cellular behavior. Bio Syst 92(3):249–258

    CAS  Google Scholar 

  33. Wang Z, Bordas V, Deisboeck TS (2011) Identification of critical molecular components in a multiscale cancer model based on the integration of Monte Carlo, resampling, and ANOVA. Front Physiol 2:35. doi:10.3389/fphys.2011.00035

    Article  PubMed Central  PubMed  Google Scholar 

  34. Wang Z, Bordas V, Sagotsky J, Deisboeck TS (2012) Identifying therapeutic targets in a combined EGFR-TGFbetaR signalling cascade using a multiscale agent-based cancer model. Math Med Biol 29(1):95–108

    Article  PubMed Central  PubMed  Google Scholar 

  35. Wang Z, Deisboeck TS, Cristini V (2014) Development of a sampling-based global sensitivity analysis workflow for multiscale computational cancer models. IET Syst Biol 8(5):191–197. doi:10.1049/iet-syb.2013.0026

    Article  PubMed  Google Scholar 

  36. Alarcon T, Byrne HM, Maini PK (2003) A cellular automaton model for tumour growth in inhomogeneous environment. J Theor Biol 225(2):257–274

    Article  CAS  PubMed  Google Scholar 

  37. Wang Z, Deisboeck TS (2008) Computational modeling of brain tumors: discrete, continuum or hybrid? Sci Model Simul 15:381–393

    Article  Google Scholar 

  38. Gerlee P, Anderson AR (2007) An evolutionary hybrid cellular automaton model of solid tumour growth. J Theor Biol 246(4):583–603. doi:10.1016/j.jtbi.2007.01.027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Marcu L, Bezak E, Olver I, van Doorn T (2005) Tumour resistance to cisplatin: a modelling approach. Phys Med Biol 50(1):93–102

    Article  CAS  PubMed  Google Scholar 

  40. Marcu L, van Doorn T, Zavgorodni S, Olver I (2002) Growth of a virtual tumour using probabilistic methods of cell generation. Aust Phys Eng Sci Med 25(4):155–161

    Article  CAS  Google Scholar 

  41. Marias K, Dionysiou D, Sakkalis V, Graf N, Bohle RM, Coveney PV, Wan S, Folarin A, Buchler P, Reyes M, Clapworthy G, Liu E, Sabczynski J, Bily T, Roniotis A, Tsiknakis M, Kolokotroni E, Giatili S, Veith C, Messe E, Stenzhorn H, Kim YJ, Zasada S, Haidar AN, May C, Bauer S, Wang T, Zhao Y, Karasek M, Grewer R, Franz A, Stamatakos G (2011) Clinically driven design of multi-scale cancer models: the ContraCancrum project paradigm. Interface Focus 1(3):450–461. doi:10.1098/rsfs.2010.0037

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Kurbatova P, Bernard S, Bessonov N, Crauste F, Demin I, Dumontet C, Fischer S, Volpert V (2011) Hybrid model of erythropoiesis and leukemia treatment with cytosine arabinoside. SIAM J Appl Math 71(6):2246–2268. doi:10.1137/100815517

    Article  CAS  Google Scholar 

  43. Sieniek M, Gurgul P, Kołodziejczyk P, Paszyński M (2010) Agent-based parallel system for numerical computations. Proc Comput Sci 1(1):1971–1981. doi:10.1016/j.procs.2010.04.221

    Article  Google Scholar 

  44. Neilson MP, Mackenzie JA, Webb SD, Insall RH (2011) Modeling cell movement and chemotaxis using pseudopod-based feedback. SIAM J Sci Comput 33(3):1035–1057. doi:10.1137/100788938

    Article  Google Scholar 

  45. Zahedmanesh H, Lally C (2012) A multiscale mechanobiological modelling framework using agent-based models and finite element analysis: application to vascular tissue engineering. Biomech Model Mechanobiol 11(3–4):363–377. doi:10.1007/s10237-011-0316-0

    Article  PubMed  Google Scholar 

  46. Plank MJ, Simpson MJ (2012) Models of collective cell behaviour with crowding effects: comparing lattice-based and lattice-free approaches. J R Soc, Interface 9(76):2983–2996. doi:10.1098/rsif.2012.0319

    Article  Google Scholar 

  47. Johnston ST, Simpson MJ, Plank MJ (2013) Lattice-free descriptions of collective motion with crowding and adhesion. Phys Rev E 88(6):062720

    Article  Google Scholar 

  48. Macklin P, Edgerton ME, Lowengrub JS, Cristini V (2010) Discrete cell modeling. In: Cristini V, Lowengrub JS (eds) Multiscale modeling of cancer: an integrated experimental and mathematical modeling approach. Cambridge University Press, Cambridge, pp 88–122

    Chapter  Google Scholar 

  49. Abbott RG, Forrest S, Pienta KJ (2006) Simulating the hallmarks of cancer. Artif Life 12(4):617–634. doi:10.1162/artl.2006.12.4.617

    Article  PubMed  Google Scholar 

  50. Zhang LS, Strouthos CG, Wang Z, Deisboeck TS (2009) Simulating brain tumor heterogeneity with a multiscale agent-based model: linking molecular signatures, phenotypes and expansion rate. Math Comput Model 49(1–2):307–319

    Article  PubMed Central  PubMed  Google Scholar 

  51. Railsback SF, Lytinen SL, Jackson SK (2006) Agent-based simulation platforms: review and development recommendations. SIMULATION 82(9):609–623. doi:10.1177/0037549706073695

    Article  Google Scholar 

  52. Meibohm B, Derendorf H (1997) Basic concepts of pharmacokinetic/pharmacodynamic (PK/PD) modelling. Int J Clin Pharmacol Ther 35(10):401–413

    CAS  PubMed  Google Scholar 

  53. Wada R, Erickson HK, Lewis Phillips GD, Provenzano CA, Leipold DD, Mai E, Johnson H, Tibbitts J (2014) Mechanistic pharmacokinetic/pharmacodynamic modeling of in vivo tumor uptake, catabolism, and tumor response of trastuzumab maytansinoid conjugates. Cancer Chemother Pharmacol 74(5):969–980. doi:10.1007/s00280-014-2561-2

    Article  CAS  PubMed  Google Scholar 

  54. Shah DK, Haddish-Berhane N, Betts A (2012) Bench to bedside translation of antibody drug conjugates using a multiscale mechanistic PK/PD model: a case study with brentuximab-vedotin. J Pharmacokinet Pharmacodyn 39(6):643–659. doi:10.1007/s10928-012-9276-y

    Article  PubMed  Google Scholar 

  55. Tate SC, Cai S, Ajamie RT, Burke T, Beckmann RP, Chan EM, De Dios A, Wishart GN, Gelbert LM, Cronier DM (2014) Semi-mechanistic pharmacokinetic/pharmacodynamic modeling of the antitumor activity of LY2835219, a new cyclin-dependent kinase 4/6 inhibitor, in mice bearing human tumor xenografts. Clin Cancer Res 20(14):3763–3774. doi:10.1158/1078-0432.CCR-13-2846

    Article  CAS  PubMed  Google Scholar 

  56. Zhou Q, Gallo JM (2011) The pharmacokinetic/pharmacodynamic pipeline: translating anticancer drug pharmacology to the clinic. AAPS J 13(1):111–120. doi:10.1208/s12248-011-9253-1

    Article  PubMed Central  PubMed  Google Scholar 

  57. Agoram BM, Martin SW, van der Graaf PH (2007) The role of mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) modelling in translational research of biologics. Drug Discov Today 12(23–24):1018–1024. doi:10.1016/j.drudis.2007.10.002

    Article  CAS  PubMed  Google Scholar 

  58. Chabner BA, Longo DL (2010) Cancer chemotherapy and biotherapy: principles and practice. Cancer chemotherapy and biotherapy, 5th edn. Lippincott Williams & Wilkins, Philadelphia

  59. Grudzinski JJ, Tome W, Weichert JP, Jeraj R (2010) The biological effectiveness of targeted radionuclide therapy based on a whole-body pharmacokinetic model. Phys Med Biol 55(19):5723–5734. doi:10.1088/0031-9155/55/19/007

    Article  PubMed  Google Scholar 

  60. Norton L, Simon R, Brereton HD, Bogden AE (1976) Predicting the course of Gompertzian growth. Nature 264(5586):542–545

    Article  CAS  PubMed  Google Scholar 

  61. Norton L (1988) A Gompertzian model of human breast cancer growth. Cancer Res 48(24 Pt 1):7067–7071

    CAS  PubMed  Google Scholar 

  62. Citron ML, Berry DA, Cirrincione C, Hudis C, Winer EP, Gradishar WJ, Davidson NE, Martino S, Livingston R, Ingle JN, Perez EA, Carpenter J, Hurd D, Holland JF, Smith BL, Sartor CI, Leung EH, Abrams J, Schilsky RL, Muss HB, Norton L (2003) Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741. J Clin Oncol 21(8):1431–1439. doi:10.1200/JCO.2003.09.081

    Article  CAS  PubMed  Google Scholar 

  63. Noble SL, Sherer E, Hannemann RE, Ramkrishna D, Vik T, Rundell AE (2010) Using adaptive model predictive control to customize maintenance therapy chemotherapeutic dosing for childhood acute lymphoblastic leukemia. J Theor Biol 264(3):990–1002. doi:10.1016/j.jtbi.2010.01.031

    Article  PubMed  Google Scholar 

  64. Mackey MC (1978) Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis. Blood 51(5):941–956

    CAS  PubMed  Google Scholar 

  65. Parra-Guillen ZP, Berraondo P, Ribba B, Troconiz IF (2013) Modeling tumor response after combined administration of different immune-stimulatory agents. J Pharmacol Exp Ther 346(3):432–442. doi:10.1124/jpet.113.206961

    Article  CAS  PubMed  Google Scholar 

  66. Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G (2008) Immunological aspects of cancer chemotherapy. Nat Rev Immunol 8(1):59–73. doi:10.1038/nri2216

    Article  CAS  PubMed  Google Scholar 

  67. Yates JW (2009) An implementation of the Expectation-Maximisation (EM) algorithm for population pharmacokinetic-pharmacodynamic modelling in ACSLXTREME. Comput Methods Programs Biomed 96(1):49–62. doi:10.1016/j.cmpb.2009.03.011

    Article  PubMed  Google Scholar 

  68. Li M, Li H, Cheng X, Wang X, Li L, Zhou T, Lu W (2013) Preclinical pharmacokinetic/pharmacodynamic models to predict schedule-dependent interaction between erlotinib and gemcitabine. Pharm Res 30(5):1400–1408. doi:10.1007/s11095-013-0978-7

    Article  CAS  PubMed  Google Scholar 

  69. Wang Z, Butner JD, Kerketta R, Cristini V, Deisboeck TS (2015) Simulating cancer growth with multiscale agent-based modeling. Semin Cancer Biol 30C:70–78. doi:10.1016/j.semcancer.2014.04.001

    Google Scholar 

  70. Kazmi N, Hossain MA, Phillips RM (2012) A hybrid cellular automaton model of solid tumor growth and bioreductive drug transport. IEEE/ACM Trans Comput Biol Bioinform 9(6):1595–1606. doi:10.1109/tcbb.2012.118

    Article  PubMed  Google Scholar 

  71. McKeown SR, Cowen RL, Williams KJ (2007) Bioreductive drugs: from concept to clinic. Clin Oncol (Royal College of Radiologists (Great Britain)) 19(6):427–442. doi:10.1016/j.clon.2007.03.006

  72. Das H, Wang Z, Niazi MK, Aggarwal R, Lu J, Kanji S, Das M, Joseph M, Gurcan M, Cristini V (2013) Impact of diffusion barriers to small cytotoxic molecules on the efficacy of immunotherapy in breast cancer. PLoS One 8(4):e61398. doi:10.1371/journal.pone.0061398

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Edgerton ME, Chuang YL, Macklin P, Yang W, Bearer EL, Cristini V (2011) A novel, patient-specific mathematical pathology approach for assessment of surgical volume: application to ductal carcinoma in situ of the breast. Anal Cell Pathol (Amst) 34(5):247–263. doi:10.3233/ACP-2011-0019

    Article  Google Scholar 

  74. Koay EJ, Truty MJ, Cristini V, Thomas RM, Chen R, Chatterjee D, Kang Y, Bhosale PR, Tamm EP, Crane CH, Javle M, Katz MH, Gottumukkala VN, Rozner MA, Shen H, Lee JE, Wang H, Chen Y, Plunkett W, Abbruzzese JL, Wolff RA, Varadhachary GR, Ferrari M, Fleming JB (2014) Transport properties of pancreatic cancer describe gemcitabine delivery and response. J Clin Investig 124(4):1525–1536. doi:10.1172/JCI73455

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Pascal J, Ashley CE, Wang Z, Brocato TA, Butner JD, Carnes EC, Koay EJ, Brinker CJ, Cristini V (2013) Mechanistic modeling identifies drug-uptake history as predictor of tumor drug resistance and nano-carrier-mediated response. ACS Nano 7(12):11174–11182. doi:10.1021/nn4048974

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Pascal J, Bearer EL, Wang Z, Koay EJ, Curley SA, Cristini V (2013) Mechanistic patient-specific predictive correlation of tumor drug response with microenvironment and perfusion measurements. Proc Natl Acad Sci. doi:10.1073/pnas.1300619110

    Google Scholar 

  77. Frieboes HB, Smith BR, Chuang YL, Ito K, Roettgers AM, Gambhir SS, Cristini V (2013) An integrated computational/experimental model of lymphoma growth. PLoS Comput Biol 9(3):e1003008. doi:10.1371/journal.pcbi.1003008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Prakasha Gowda AS, Polizzi JM, Eckert KA, Spratt TE (2010) Incorporation of gemcitabine and cytarabine into DNA by DNA polymerase beta and ligase III/XRCC1. Biochemistry 49(23):4833–4840. doi:10.1021/bi100200c

    Article  CAS  PubMed  Google Scholar 

  79. Momparler RL (1974) A model for the chemotherapy of acute leukemia with 1-beta-d-arabinofuranosylcytosine. Cancer Res 34(8):1775–1787

    CAS  PubMed  Google Scholar 

  80. Gevertz JL (2011) Computational modeling of tumor response to vascular-targeting therapies–part I: validation. Comput Math Methods Med 2011:830515. doi:10.1155/2011/830515

    Article  PubMed Central  PubMed  Google Scholar 

  81. Gevertz JL, Torquato S (2006) Modeling the effects of vasculature evolution on early brain tumor growth. J Theor Biol 243(4):517–531. doi:10.1016/j.jtbi.2006.07.002

    Article  CAS  PubMed  Google Scholar 

  82. Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8(8):592–603. doi:10.1038/nrc2442

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Gatenby RA (2009) A change of strategy in the war on cancer. Nature 459(7246):508–509. doi:10.1038/459508a

    Article  CAS  PubMed  Google Scholar 

  84. Sorenson CM, Barry MA, Eastman A (1990) Analysis of events associated with cell cycle arrest at G2 phase and cell death induced by cisplatin. J Natl Cancer Inst 82(9):749–755

    Article  CAS  PubMed  Google Scholar 

  85. Wu M, Frieboes HB, McDougall SR, Chaplain MA, Cristini V, Lowengrub J (2013) The effect of interstitial pressure on tumor growth: coupling with the blood and lymphatic vascular systems. J Theor Biol 320:131–151. doi:10.1016/j.jtbi.2012.11.031

    Article  PubMed Central  PubMed  Google Scholar 

  86. Frieboes HB, Edgerton ME, Fruehauf JP, Rose FR, Worrall LK, Gatenby RA, Ferrari M, Cristini V (2009) Prediction of drug response in breast cancer using integrative experimental/computational modeling. Cancer Res 69(10):4484–4492. doi:10.1158/0008-5472.CAN-08-3740

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Sinek JP, Sanga S, Zheng X, Frieboes HB, Ferrari M, Cristini V (2009) Predicting drug pharmacokinetics and effect in vascularized tumors using computer simulation. J Math Biol 58(4–5):485–510. doi:10.1007/s00285-008-0214-y

    Article  PubMed Central  PubMed  Google Scholar 

  88. Wise SM, Lowengrub JS, Frieboes HB, Cristini V (2008) Three-dimensional multispecies nonlinear tumor growth–I Model and numerical method. J Theor Biol 253(3):524–543. doi:10.1016/j.jtbi.2008.03.027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Wu M, Frieboes HB, Chaplain MA, McDougall SR, Cristini V, Lowengrub JS (2014) The effect of interstitial pressure on therapeutic agent transport: coupling with the tumor blood and lymphatic vascular systems. J Theor Biol 355:194–207. doi:10.1016/j.jtbi.2014.04.012

    Article  CAS  PubMed  Google Scholar 

  90. Welter M, Rieger H (2013) Interstitial fluid flow and drug delivery in vascularized tumors: a computational model. PLoS One 8(8):e70395. doi:10.1371/journal.pone.0070395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Jain RK (1987) Transport of molecules in the tumor interstitium: a review. Cancer Res 47(12):3039–3051

    CAS  PubMed  Google Scholar 

  92. Jain RK, Tong RT, Munn LL (2007) Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model. Cancer Res 67(6):2729–2735. doi:10.1158/0008-5472.CAN-06-4102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Winslow RL, Trayanova N, Geman D, Miller MI (2012) Computational medicine: translating models to clinical care. Sci Transl Med 4(158):158rv111. doi:10.1126/scitranslmed.3003528

  94. Tamascelli D, Dambrosio FS, Conte R, Ceotto M (2014) Graphics processing units accelerated semiclassical initial value representation molecular dynamics. J Chem Phys 140(17):174109. doi:10.1063/1.4873137

    Article  PubMed  Google Scholar 

  95. Gu X, Pan H, Liang Y, Castillo R, Yang D, Choi D, Castillo E, Majumdar A, Guerrero T, Jiang SB (2010) Implementation and evaluation of various demons deformable image registration algorithms on a GPU. Phys Med Biol 55(1):207–219. doi:10.1088/0031-9155/55/1/012

    Article  PubMed  Google Scholar 

  96. Chen X, Summers R, Yao J (2011) FEM-based 3-D tumor growth prediction for kidney tumor. IEEE Trans Bio-Med Eng 58(3):463–467. doi:10.1109/tbme.2010.2089522

    Article  Google Scholar 

  97. Wang Z, Sagotsky J, Taylor T, Shironoshita P, Deisboeck TS (2013) Accelerating cancer systems biology research through Semantic Web technology. Wiley interdisciplinary reviews. Syst Biol Med 5(2):135–151. doi:10.1002/wsbm.1200

    CAS  Google Scholar 

  98. Powathil GG, Adamson DJ, Chaplain MA (2013) Towards predicting the response of a solid tumour to chemotherapy and radiotherapy treatments: clinical insights from a computational model. PLoS Comput Biol 9(7):e1003120. doi:10.1371/journal.pcbi.1003120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported in part by the National Science Foundation (NSF) Grant DMS-1263742 (Z.W., V.C.), the National Institutes of Health Grant (NIH) 1U54CA149196, 1U54CA143837, 1U54CA151668, 1U54CA143907 (V.C.), King Abdulaziz University (KAU) Grant No. 54-130-35-HiCi (V.C.), the University of New Mexico Cancer Center Victor and Ruby Hansen Surface Professorship in Molecular Modeling of Cancer (V.C.), and the Harvard-MIT (HST) Athinoula A. Martinos Center for Biomedical Imaging and the Department of Radiology at Massachusetts General Hospital (T.S.D.). Finally, we apologize to those of our colleagues whose works could not be cited due to space limitations.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas S. Deisboeck.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Butner, J.D., Cristini, V. et al. Integrated PK-PD and agent-based modeling in oncology. J Pharmacokinet Pharmacodyn 42, 179–189 (2015). https://doi.org/10.1007/s10928-015-9403-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-015-9403-7

Keywords