Abstract
The relationship between monotonicity and accretivity on Riemannian manifolds is studied in this paper and both concepts are proved to be equivalent in Hadamard manifolds. As a consequence an iterative method is obtained for approximating singularities of Lipschitz continuous, strongly monotone mappings. We also establish the equivalence between the strong convexity of functions and the strong monotonicity of its subdifferentials on Riemannian manifolds. These results are then applied to solve the minimization of convex functions on Riemannian manifolds.
Similar content being viewed by others
References
Browder, F.E., Petryshyn, W.V.: Construction of fixed points of nonlinear mappings in Hilbert spaces. J. Math. Anal. Appl. 73, 875–881 (1967)
Brezis, H.: Opérateurs Maximaux Monotones et Semi-groupes de Contractions Dans Les Espaces de Hilbert. American Elsevier Publishing, New York (1973)
Zeidler, E.: Nonlinear Functional Analysis and Applications. II/B. Nonlinear Monotone Operators. Springer, New York (1990)
Cioranescu, I.: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems. Kluwer Academic, Dordrecht (1990)
Da Cruz Neto, J.X., Ferreira, O.P., Lucambio Pérez, L.R.: Monotone point-to-set vector fields. Balk. J. Geom. Appl. 5, 69–79 (2000)
Ferreira, O.P., Oliveira, P.R.: Proximal point algorithm on Riemannian manifolds. Optimization 51, 257–270 (2002)
Ferreira, O.P., Lucambio Pérez, L.R., Nemeth, S.Z.: Singularities of monotone vector fields and an extragradient-type algorithm. J. Glob. Optim. 31, 133–151 (2005)
Rapcsák, T.: Smooth Nonlinear Optimization in ℝn. Nonconvex Optimization and Its Applications, vol. 19. Kluwer Academic, Dordrecht (1997)
Martín-Márquez, V.: Nonexpansive mappings and monotone vector fields in Hadamard manifold. Commun. Appl. Anal. 13, 633–646 (2009)
Smith, S.T.: Optimization Techniques on Riemannian Manifolds. Fields Institute Communications, vol. 3, pp. 113–146. American Mathematical Society, Providence (1994)
Sturm, K.T.: Probability measures on metric spaces of nonpositive curvature. In: Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces, Paris, 2002. Contemp. Math., vol. 338, pp. 357–390. Am. Math. Soc., Providence (2003)
Iwamiya, T., Okochi, H.: Monotonicity, resolvents and Yosida approximations of operators on Hilbert manifolds. Nonlinear Anal. 54, 205–214 (2003)
Udriste, C.: Convex Functions and Optimization Methods on Riemannian Manifolds. Mathematics and Its Applications, vol. 297. Kluwer Academic, Dordrecht (1994)
Li, S.L., Li, C., Liou, Y.C., Yao, J.C.: Existence of solutions for variational inequalities on Riemannian manifolds. Nonlinear Anal. 71(11), 5695–5706 (2009)
Ledyaev, Y.S., Zhu, Q.J.: Nonsmooth analysis on smooth manifolds. Trans. Am. Math. Soc. 359, 3687–3732 (2007)
Dedieu, J.P., Priouret, P., Malajovich, G.: Newton’s method on Riemannian manifolds: covariant alpha theory. IMA J. Numer. Anal. 23, 395–419 (2003)
Ferreira, O.P., Svaiter, B.F.: Kantorovich’s theorem on Newton’s method in Riemannian manifolds. J. Complex. 18, 304–329 (2002)
Li, C., Wang, J.H.: Convergence of the Newton method and uniqueness of zeros of vector fields on Riemannian manifolds. Sci. China Ser. A 48, 1465–1478 (2005)
Li, C., Wang, J.H.: Newton’s method on Riemannian manifolds: Smale’s point estimate theory under the γ-condition. IMA J. Numer. Anal. 26, 228–251 (2006)
Li, C., Wang, J.H.: Newton’s method for sections on Riemannian manifolds: generalized covariant α-theory. J. Complex. 24, 423–451 (2008)
Wang, J.H., Li, C.: Uniqueness of the singular points of vector fields on Riemannian manifolds under the γ-condition. J. Complex. 22, 533–548 (2006)
Azagra, D., Ferrera, J., López-Mesas, F.: Nonsmooth analysis and Hamilton-Jacobi equations on Riemannian manifolds. J. Funct. Anal. 220, 304–361 (2005)
Li, C., López, G., Martín-Márquez, V.: Monotone vector fields and the proximal point algorithm on Hadamard manifolds. J. Lond. Math. Soc. 79(3), 663–683 (2009)
Németh, S.Z.: Monotone vector fields. Publ. Math. Debr. 54(3–4), 437–449 (1999)
Németh, S.Z.: Geodesic monotone vector fields. Lobachevskii J. Math. 5, 13–28 (1999)
Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)
DoCarmo, M.P.: Riemannian Geometry. Birkhauser, Boston (1992)
Sakai, T.: Riemannian Geometry. Translations of Mathematical Monographs, vol. 149. American Mathematical Society, Providence (1996)
Walter, R.: On the metric projection onto convex sets in Riemannian spaces. Arch. Math. 25, 91–98 (1974)
Cheeger, J.D., Gromoll, D.: On the structure of complete manifolds of nonnegative curvature. Ann. Math. 96(2), 413–443 (1972)
Chidume, C.E.: Iterative approximation of fixed points of Lipschitzian strictly pseudo-contractive mappings. Proc. Am. Math. Soc. 99(2), 283–288 (1987)
Chidume, C.E.: Iterative approximation of the solution of a monotone operator equation in certain Banach spaces. International Centre for Theorical Physics IC/88/22 (1988)
Kamimura, S., Takahashi, W.: Approximating solutions of maximal monotone operators in Hilbert spaces. J. Approx. Theory 13, 226–240 (2000)
Polyak, B.T.: Existence theorems and convergence of minimizing sequences in extremun problems with restrictions. Dokl. Akad. Nauk. USSR 166, 287–290 (1966)
Li, C., Mordukhovich, B.S., Wang, J.H., Yao, J.C.: Weak sharp minima on Riemannian manifolds. SIAM J. Optim. (submitted)
Da Cruz Neto, J.X., Ferreira, O.P., Lucambio Pérez, L.R.: Contributions to the study of monotone vector fields. Acta Math. Hung. 94(4), 307–320 (2002)
Bridson, M., Haefliger, A.: Metric Spaces of Non-positive Curvature. Springer, Berlin, Heidelberg, New York (1999)
Li, C., López, G., Martín-Márquez, V.: Iterative algorithms for nonexpansive mappings in Hadamard manifolds. Taiwan. J. Math. 14(2), 541–559 (2010)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by J.-C. Yao.
G. López partially supported by Ministerio de Ciencia e Innovación, Grant MTM2009-110696-C02-01 and Junta de Andalucía, Grant FQM-127.
V. Martín-Márquez partially supported by Ministerio de Ciencia e Innovación, Grants MTM2009-110696-C02-01 and AP2005-1018, and Junta de Andalucía, Grant FQM-127.
C. Li partially supported by Ministerio de Ciencia e Innovación, Grant MTM2009-110696-C02-01, Spain; the National Natural Science Foundations of China (Grant No. 10731060).
Rights and permissions
About this article
Cite this article
Wang, J.H., López, G., Martín-Márquez, V. et al. Monotone and Accretive Vector Fields on Riemannian Manifolds. J Optim Theory Appl 146, 691–708 (2010). https://doi.org/10.1007/s10957-010-9688-z
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-010-9688-z