Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Enlargement of Monotone Vector Fields and an Inexact Proximal Point Method for Variational Inequalities in Hadamard Manifolds

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, an inexact proximal point method for variational inequalities in Hadamard manifolds is introduced and its convergence properties are studied. To present our method, we generalize the concept of enlargement of monotone operators, from a linear setting to the Riemannian context. As an application, an inexact proximal point method for constrained optimization problems is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmadi, P., Khatibzadeh, H.: On the convergence of inexact proximal point algorithm on Hadamard manifolds. Taiwan. J. Math. 18(2), 419–433 (2014)

    MathSciNet  Google Scholar 

  2. Bačák, M.: The proximal point algorithm in metric spaces. Isr. J. Math. 194(2), 689–701 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bento, G.C., Ferreira, O.P., Oliveira, P.R.: Proximal point method for a special class of nonconvex functions on Hadamard manifolds. Optimization 64(2), 289–319 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Papa Quiroz, E.A., Oliveira, P.R.: Full convergence of the proximal point method for quasiconvex functions on Hadamard manifolds. ESAIM Control Optim. Calc. Var. 18(2), 483–500 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Tang, G., Huang, N.: An inexact proximal point algorithm for maximal monotone vector fields on Hadamard manifolds. Oper. Res. Lett. 41(6), 586–591 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wang, J., Li, C., Lopez, G., Yao, J.C.: Convergence analysis of inexact proximal point algorithms on Hadamard manifolds. J. Global Optim. 61(3), 553–573 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bento, G.C., Melo, J.G.: Subgradient method for convex feasibility on Riemannian manifolds. J. Optim. Theory Appl. 152(3), 773–785 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Colao, V., López, G., Marino, G., Martín-Márquez, V.: Equilibrium problems in Hadamard manifolds. J. Math. Anal. Appl. 388(1), 61–77 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Da Cruz Neto, J.X., Ferreira, O.P., Pérez, L.R.L., Németh, S.Z.: Convex- and monotone-transformable mathematical programming problems and a proximal-like point method. J. Global Optim. 35(1), 53–69 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Rapcsák, T.: Smooth Nonlinear Optimization in \(\mathbf{R}^n\), Nonconvex Optimization and its Applications, vol. 19. Kluwer Academic Publishers, Dordrecht (1997)

    Book  Google Scholar 

  11. Adler, R.L., Dedieu, J.P., Margulies, J.Y., Martens, M., Shub, M.: Newton’s method on Riemannian manifolds and a geometric model for the human spine. IMA J. Numer. Anal. 22(3), 359–390 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20(2), 303–353 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Karmarkar, N.: Riemannian geometry underlying interior-point methods for linear programming. In: Lagarias, J.C., Todd, M.J. (eds.) Mathematical Developments Arising from Linear Programming (Brunswick, ME, 1988), Contemp. Math., vol. 114, pp. 51–75. American Mathematical Soceity, Providence, RI (1990)

  14. Nesterov, Y.E., Todd, M.J.: On the Riemannian geometry defined by self-concordant barriers and interior-point methods. Found. Comput. Math. 2(4), 333–361 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Smith, S.T.: Optimization techniques on Riemannian manifolds. In: Hamiltonian and Gradient Flows, Algorithms and Control, Fields Inst. Commun., vol. 3, pp. 113–136. American Mathematical Soceity, Providence, RI (1994)

  16. Németh, S.Z.: Variational inequalities on Hadamard manifolds. Nonlinear Anal. 52(5), 1491–1498 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, C., Yao, J.C.: Variational inequalities for set-valued vector fields on Riemannian manifolds: convexity of the solution set and the proximal point algorithm. SIAM J. Control Optim. 50(4), 2486–2514 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fang, C., Chen, Sl: A projection algorithm for set-valued variational inequalities on Hadamard manifolds. Optim. Lett. 9(4), 779–794 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, S.L., Li, C., Liou, Y.C., Yao, J.C.: Existence of solutions for variational inequalities on Riemannian manifolds. Nonlinear Anal. 71(11), 5695–5706 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tang, G., Wang, X., Liu, H.: A projection-type method for variational inequalities on Hadamard manifolds and verification of solution existence. Optimization 64(5), 1081–1096 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tang, G., Zhou, L., Huang, N.: The proximal point algorithm for pseudomonotone variational inequalities on Hadamard manifolds. Optim. Lett. 7(4), 779–790 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ferreira, O.P., Oliveira, P.R.: Proximal point algorithm on Riemannian manifolds. Optimization 51(2), 257–270 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, C., López, G., Martín-Márquez, V.: Monotone vector fields and the proximal point algorithm on Hadamard manifolds. J. Lond. Math. Soc. (2) 79(3), 663–683 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Burachik, R.S., Iusem, A.N., Svaiter, B.F.: Enlargement of monotone operators with applications to variational inequalities. Set-Valued Anal. 5(2), 159–180 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Burachik, R.S., Iusem, A.N.: A generalized proximal point algorithm for the variational inequality problem in a Hilbert space. SIAM J. Optim. 8(1), 197–216 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Burachik, R.S., Iusem, A.N.: Set-Valued Mappings and Enlargements of Monotone Operators, Springer Optimization and Its Applications, vol. 8. Springer, New York (2008)

    Google Scholar 

  27. do Carmo, M.P.: Riemannian Geometry. Mathematics: Theory and Applications. Birkhäuser Boston, Inc., Boston (1992)

    Book  Google Scholar 

  28. Sakai, T.: Riemannian Geometry, Translations of Mathematical Monographs, vol. 149. American Mathematical Society, Providence (1996)

    Google Scholar 

  29. Burachik, R., Drummond, L.M.G., Iusem, A.N., Svaiter, B.F.: Full convergence of the steepest descent method with inexact line searches. Optimization 32(2), 137–146 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. Németh, S.Z.: Monotone vector fields. Publ. Math. Debrecen 54(3–4), 437–449 (1999)

    MathSciNet  MATH  Google Scholar 

  31. da Cruz Neto, J.X., Ferreira, O.P., Lucambio Pérez, L.R.: Monotone point-to-set vector fields. Balk. J. Geom. Appl. 5(1), 69–79 (2000)

    MathSciNet  MATH  Google Scholar 

  32. Cioranescu, I.: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Mathematics and Its Applications, vol. 62. Kluwer, Dordrecht (1990)

    Book  MATH  Google Scholar 

  33. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, New York (2011)

    Google Scholar 

  34. da Cruz Neto, J.X., Ferreira, O.P., Lucambio Pérez, L.R.: Contributions to the study of monotone vector fields. Acta Math. Hung. 94(4), 307–320 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. Brøndsted, A., Rockafellar, R.T.: On the subdifferentiability of convex functions. Proc. Am. Math. Soc. 16, 605–611 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms: Advanced Theory and Bundle Methods. II. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1993)

    MATH  Google Scholar 

  37. Grohs, P., Hosseini, S.: \(\varepsilon \)-subgradient algorithms for locally lipschitz functions on Riemannian manifolds. Adv. Comput. Math. 42(2), 333–360 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The work was supported by FAPEG and CNPq Grants 458479/2014-4, 471815/2012-8, 303732/2011-3, 312077/2014-9, 305158/2014-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edvaldo E. A. Batista.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batista, E.E.A., Bento, G.C. & Ferreira, O.P. Enlargement of Monotone Vector Fields and an Inexact Proximal Point Method for Variational Inequalities in Hadamard Manifolds. J Optim Theory Appl 170, 916–931 (2016). https://doi.org/10.1007/s10957-016-0982-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-016-0982-2

Keywords

Mathematics Subject Classification